论文标题
完全无监督的多样性通过卷积变分自动编码器降级
Fully Unsupervised Diversity Denoising with Convolutional Variational Autoencoders
论文作者
论文摘要
基于深度学习的方法已成为几乎所有图像恢复任务的无可争议的领导者。尤其是在显微镜图像的领域中,现在使用各种内容感知的图像恢复(CARE)方法来改善获得数据的解释性。自然,在损坏的图像中可以恢复的内容存在局限性,就像对于所有反问题一样,存在许多潜在的解决方案,并且必须选择其中之一。在这里,我们提出了Divnoising,这是一种基于完全卷积的变化自动编码器(VAE)的转换方法,它克服了必须通过预测DeNO.图像的整体分布来选择单个解决方案的问题。首先,我们引入了一种原则性的方式,可以通过将成像噪声模型明确地纳入解码器,从而在VAE框架内制定无监督的denoisis问题。我们的方法是完全无监督的,只需要嘈杂的图像和对成像噪声分布的适当描述。我们表明,可以测量这样的噪声模型,从嘈杂的数据中进行自举,或者在训练过程中共同学习。如果需要,可以从一系列分歧的预测中推断出共识预测,从而通过其他无监督的方法导致竞争成果,甚至有时即使是有监督的最先进的方法。后验中的样品可实现大量有用的应用。我们(i)显示13个数据集的脱氧结果,(ii)讨论光学特征识别(OCR)应用如何从不同的预测中受益,并且(iii)证明实例细胞分割在使用多样化的Divnoising预测时如何改善。
Deep Learning based methods have emerged as the indisputable leaders for virtually all image restoration tasks. Especially in the domain of microscopy images, various content-aware image restoration (CARE) approaches are now used to improve the interpretability of acquired data. Naturally, there are limitations to what can be restored in corrupted images, and like for all inverse problems, many potential solutions exist, and one of them must be chosen. Here, we propose DivNoising, a denoising approach based on fully convolutional variational autoencoders (VAEs), overcoming the problem of having to choose a single solution by predicting a whole distribution of denoised images. First we introduce a principled way of formulating the unsupervised denoising problem within the VAE framework by explicitly incorporating imaging noise models into the decoder. Our approach is fully unsupervised, only requiring noisy images and a suitable description of the imaging noise distribution. We show that such a noise model can either be measured, bootstrapped from noisy data, or co-learned during training. If desired, consensus predictions can be inferred from a set of DivNoising predictions, leading to competitive results with other unsupervised methods and, on occasion, even with the supervised state-of-the-art. DivNoising samples from the posterior enable a plethora of useful applications. We are (i) showing denoising results for 13 datasets, (ii) discussing how optical character recognition (OCR) applications can benefit from diverse predictions, and are (iii) demonstrating how instance cell segmentation improves when using diverse DivNoising predictions.