论文标题

树宽与集团数字。 I.具有禁止结构的图形类

Treewidth versus clique number. I. Graph classes with a forbidden structure

论文作者

Dallard, Clément, Milanič, Martin, Štorgel, Kenny

论文摘要

树宽是一个重要的图形不变性,与结构和算法的原因均相关。图形类具有界限的必要条件是没有大集团。我们研究了在诱导子图中关闭的图形类别,在这种子图中,这种情况也足够,我们称之为$(TW,ω)$ - 有限。已知这些图形类具有与集团变体和$ k $颜色问题有关的有用算法应用程序。我们考虑了六个众所周知的图形遏制关系:未成年人,拓扑次要,子图,诱发次要,诱导的拓扑次要和诱导的子图关系。对于每个人,我们给出了图形$ h $的完整表征,该类别的图表不包括$ h $是$(tw,ω)$。我们的结果产生了一个无限的$χ$结合的诱导型图形类别的家庭,这意味着$ 1 $ - 完美的可取向的图形为$(TW,ω)$有限,从而导致$ k $ $ k $的线性算法$ k $ - 颜色$ 1 $ - perfectly-orientlientable图形,每个固定的$ k $ $ k $ k $ k $ k $ k $ k $ k $ k $ k $。这回答了2018年Bre \ v Sar,Hartinger,Kos和Milani {\ V C}的问题,以及分别为2019年的Beisegel,Chudnovsky,Gurvich,Milani {\ v C}和Servatius。我们还揭示了与列表$ k $ - 颜色和集团问题有关的$(tw,ω)$有限的一些算法含义。此外,我们提出了一个关于$(TW,ω)$边界图类中最大重量独立设置问题的复杂性的问题,并证明该问题在每个类别的图表中都可以解决,将固定星作为诱导的次要次数溶解。

Treewidth is an important graph invariant, relevant for both structural and algorithmic reasons. A necessary condition for a graph class to have bounded treewidth is the absence of large cliques. We study graph classes closed under taking induced subgraphs in which this condition is also sufficient, which we call $(tw,ω)$-bounded. Such graph classes are known to have useful algorithmic applications related to variants of the clique and $k$-coloring problems. We consider six well-known graph containment relations: the minor, topological minor, subgraph, induced minor, induced topological minor, and induced subgraph relations. For each of them, we give a complete characterization of the graphs $H$ for which the class of graphs excluding $H$ is $(tw,ω)$-bounded. Our results yield an infinite family of $χ$-bounded induced-minor-closed graph classes and imply that the class of $1$-perfectly orientable graphs is $(tw,ω)$-bounded, leading to linear-time algorithms for $k$-coloring $1$-perfectly orientable graphs for every fixed~$k$. This answers a question of Bre\v sar, Hartinger, Kos, and Milani{\v c} from 2018 and one of Beisegel, Chudnovsky, Gurvich, Milani{\v c}, and Servatius from 2019, respectively. We also reveal some further algorithmic implications of $(tw,ω)$-boundedness related to list $k$-coloring and clique problems. In addition, we propose a question about the complexity of the maximum weight independent set problem in $(tw,ω)$-bounded graph classes and prove that the problem is polynomial-time solvable in every class of graphs excluding a fixed star as an induced minor.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源