论文标题
Vintergatan I:在模拟的银河系中,化学,运动学上和结构上不同的圆盘的起源
VINTERGATAN I: The origins of chemically, kinematically and structurally distinct discs in a simulated Milky Way-mass galaxy
论文作者
论文摘要
对银河系恒星的光谱调查揭示了编码其历史的空间,化学和运动学结构。在这项工作中,我们使用银河系盘式星系的宇宙变焦模拟Vintergatan研究了它们的起源。我们发现,与$ z \ sim 1.5 $的最后一次主要合并有关,宇宙学的积聚会导致外在的,金属贫困,低 - [$α$/fe]的气盘,围绕内部金属富含金属的星系,其中包含旧高高 - [$α$/fe]星星。该事件在[Fe/H]范围内导致[$α$/fe]的双峰性。出现了自$ z \ sim 1 $以来星系如何发展的详细分析。我们演示了内而外生长塑造径向表面密度和金属度谱以及径向迁移如何优先将恒星从内部盘移到外盘的方式。发现世俗的圆盘加热会引起速度分散体和随着恒定年龄的速度的增加,并且与圆盘燃烧一起解释了以银河系中观察到的几种趋势,包括中平面上方的浅径向[Fe/h] - profiles。我们展示了星系形成方案如何在结构关联(即厚和薄的盘),速度分散剂,$α$增强和恒星年龄之间的结构关联之间的非平凡映射。发现低 - [$α$/fe]序列中最大的金属贫困恒星具有与旧高 - [$α$/fe]恒星相当的比例。最后,我们说明如何在低空间分辨率下,与银河系的厚度相当,这是无法捕获[$α$/fe/h]中不同序列的提出的途径。
Spectroscopic surveys of the Milky Way's stars have revealed spatial, chemical and kinematical structures that encode its history. In this work, we study their origins using a cosmological zoom simulation, VINTERGATAN, of a Milky Way-mass disc galaxy. We find that in connection to the last major merger at $z\sim 1.5$, cosmological accretion leads to the rapid formation of an outer, metal-poor, low-[$α$/Fe] gas disc around the inner, metal-rich galaxy containing the old high-[$α$/Fe] stars. This event leads to a bimodality in [$α$/Fe] over a range of [Fe/H]. A detailed analysis of how the galaxy evolves since $z\sim 1$ is presented. We demonstrate the way in which inside-out growth shapes the radial surface density and metallicity profile and how radial migration preferentially relocates stars from the inner to the outer disc. Secular disc heating is found to give rise to increasing velocity dispersions and scaleheights with stellar age, which together with disc flaring explains several trends observed in the Milky Way, including shallower radial [Fe/H]-profiles above the midplane. We show how the galaxy formation scenario imprints non-trivial mappings between structural associations (i.e. thick and thin discs), velocity dispersions, $α$-enhancements, and ages of stars, e.g. the most metal-poor stars in the low-[$α$/Fe] sequence are found to have a scaleheight comparable to old high-[$α$/Fe] stars. Finally, we illustrate how at low spatial resolution, comparable to the thickness of the galaxy, the proposed pathway to distinct sequences in [$α$/Fe]-[Fe/H] cannot be captured.