论文标题
CAN-D:用于全面解码控制器区域网络数据的模块化四步管道
CAN-D: A Modular Four-Step Pipeline for Comprehensively Decoding Controller Area Network Data
论文作者
论文摘要
罐子是用于实时交流关键车辆子系统的广播协议。乘用车的原始设备制造商将其罐头数据映射到车辆信号中,这些定义根据Make,Model和Year而异。没有这些映射,隐藏在罐头包中的大量实时车辆信息是无法解释的,阻碍了与车辆有关的研究。在4部分可以信号定义的指导下,我们提出了CAN-D(CAN-DECODER),这是一种模块化的四步管道,用于识别每个信号的边界(启动位,长度),Endianness(字节订单),签名(字节订单),签名(位到Integer编码),并通过利用诊断标准,增加具有物理解释的诊断子集,以增加诊断标准。我们对CAN信号逆向工程研究进行了全面审查。以前的方法忽略了endianness和签名,使它们无法解码许多标准可以发出信号定义。结合末日的搜索空间从128到4.72E21信号引起键盘,并引入了不断变化的依赖性的网络。我们制定,正式分析,并为优化问题提供有效的解决方案,从而识别最佳信号边界和字节顺序。我们提供了两个新颖的,最先进的信号边界分类器,以优于以前的方法,并在三种不同的测试方案中进行回忆,这是第一个签名的分类算法,该算法显示出$> $> $ 97 \%\%f-Score。 CAN-D是唯一具有提取任何罐头信号的潜力的解决方案。在对10辆车的评估中,CAN-D的平均$ \ ell^1 $错误比所有以前的方法都要好5倍,并且展示了较低的AVE。错误,即使仅考虑符合先前方法的假设的信号。 CAN-D在轻量级硬件中实现,允许使用实时车辆内解码的OBD-II插件。
CANs are a broadcast protocol for real-time communication of critical vehicle subsystems. Original equipment manufacturers of passenger vehicles hold secret their mappings of CAN data to vehicle signals, and these definitions vary according to make, model, and year. Without these mappings, the wealth of real-time vehicle information hidden in the CAN packets is uninterpretable, impeding vehicle-related research. Guided by the 4-part CAN signal definition, we present CAN-D (CAN-Decoder), a modular, 4-step pipeline for identifying each signal's boundaries (start bit, length), endianness (byte order), signedness (bit-to-integer encoding), and by leveraging diagnostic standards, augmenting a subset of the extracted signals with physical interpretation. We provide a comprehensive review of the CAN signal reverse engineering research. Previous methods ignore endianness and signedness, rendering them incapable of decoding many standard CAN signal definitions. Incorporating endianness grows the search space from 128 to 4.72E21 signal tokenizations and introduces a web of changing dependencies. We formulate, formally analyze, and provide an efficient solution to an optimization problem, allowing identification of the optimal set of signal boundaries and byte orderings. We provide two novel, state-of-the-art signal boundary classifiers-both superior to previous approaches in precision and recall in three different test scenarios-and the first signedness classification algorithm which exhibits a $>$97\% F-score. CAN-D is the only solution with the potential to extract any CAN signal. In evaluation on 10 vehicles, CAN-D's average $\ell^1$ error is 5x better than all previous methods and exhibits lower ave. error, even when considering only signals that meet prior methods' assumptions. CAN-D is implemented in lightweight hardware, allowing for an OBD-II plugin for real-time in-vehicle CAN decoding.