论文标题

可证明从数据中对消散性属性的验证

Provably robust verification of dissipativity properties from data

论文作者

Koch, Anne, Berberich, Julian, Allgöwer, Frank

论文摘要

事实证明,耗散性能对于系统分析和控制器设计非常有价值。因此,随着可用数据的增加,直接从(测量)轨迹确定耗散性属性的兴趣越来越大,而系统的显式模型仍未公开。但是,大多数现有的数据驱动耗散性的方法仅在有限的时间范围内保证耗散性条件,并且在存在噪声的情况下为稳健性提供弱或不保证。在本文中,我们提出了一个框架,用于验证具有理想保证的测量数据中的耗散性能。我们首先考虑输入状态测量的情况,在噪声存在下,我们提供了非保守和计算有吸引力的条件。我们将此方法扩展到输入输出数据,在无噪声情况下,相似的结果存在。然后,我们为嘈杂的输入输出数据案例提供结果,这特别具有挑战性。最后,我们在现实世界实验中应用了所提出的方法,并说明了与基于系统识别的既定方法相比其适用性和优势。

Dissipativity properties have proven to be very valuable for systems analysis and controller design. With the rising amount of available data, there has therefore been an increasing interest in determining dissipativity properties from (measured) trajectories directly, while an explicit model of the system remains undisclosed. Most existing approaches for data-driven dissipativity, however, guarantee the dissipativity condition only over a finite time horizon and provide weak or no guarantees on robustness in the presence of noise. In this paper, we present a framework for verifying dissipativity properties from measured data with desirable guarantees. We first consider the case of input-state measurements, where we provide non-conservative and computationally attractive conditions in the presence of noise. We extend this approach to input-output data, where similar results hold in the noise-free case. We then provide results for the noisy input-output data case, which is particularly challenging. Finally, we apply the proposed approach in a real-world experiment and illustrate its applicability and advantages compared to established methods based on system identification.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源