论文标题
Finsler-randers Gravity中的Schwarzschild的解决方案
Schwarzschild-like solutions in Finsler-Randers gravity
论文作者
论文摘要
在这项工作中,我们首次扩展了球形对称的Schwarzschild和Schwarzschild-de Sitter Solutions,该解决方案具有由Covector $a_γ$生成的Finsler-randers-type扰动。这给出了度量标准的局部各向异性特征,并引起了与里曼的重力模型的偏差。这项研究的自然框架是时空歧管的洛伦兹切线束。我们将广义字段方程应用于扰动度量,并得出COVECTOR $A_γ$的动力学。最后,我们在Schwarzschild-randers SpaceTime上找到了时间型,间距和无效的路径,我们以数字方式求解了时间表,并将它们与一般相对性的经典测量学进行了比较。获得的解决方案是新的,它们丰富了相应的文献。
In this work, we extend for the first time the spherically symmetric Schwarzschild and Schwarzschild-De Sitter solutions with a Finsler-Randers-type perturbation which is generated by a covector $A_γ$. This gives a locally anisotropic character to the metric and induces a deviation from the Riemannian models of gravity. A natural framework for this study is the Lorentz tangent bundle of a spacetime manifold. We apply the generalized field equations to the perturbed metric and derive the dynamics for the covector $A_γ$. Finally, we find the timelike, spacelike and null paths on the Schwarzschild-Randers spacetime, we solve the timelike ones numerically and we compare them with the classic geodesics of general relativity. The obtained solutions are new and they enrich the corresponding literature.