论文标题
无定形拓扑问题的关键性 - 超出了通用缩放范式
Criticality in amorphous topological matter -- beyond the universal scaling paradigm
论文作者
论文摘要
我们建立了无定形的Chern绝缘子中关键运输的理论,并表明它超出了量子厅过渡表现出的拓扑批判性范围的当前范式。我们考虑了Chern绝缘子在渗透型随机晶格上的模型,其中平均密度决定了几何学的统计特性。尽管这些系统在临界密度附近显示了两参数缩放行为,但临界指数和临界电导分布非常明显。我们的分析表明,无定形拓扑临界性是由于低密度下的几何型跃迁和高密度下的安德森定位型跃迁引起的。我们的作品展示了最近发现的无定形拓扑系统如何显示出独特的现象,这些现象与他们的传统研究相关。
We establish the theory of critical transport in amorphous Chern insulators and show that it lies beyond the current paradigm of topological criticality epitomized by the quantum Hall transitions. We consider models of Chern insulators on percolation-type random lattices where the average density determines the statistical properties of geometry. While these systems display a two-parameter scaling behaviour near the critical density, the critical exponents and the critical conductance distributions are strikingly nonuniversal. Our analysis indicates that the amorphous topological criticality results from an interpolation of a geometric-type transition at low density and an Anderson localization-type transition at high density. Our work demonstrates how the recently discovered amorphous topological systems display unique phenomena distinct from their conventionally-studied counterparts.