论文标题

通过机器学习从单光谱CT的X射线单色成像

X-ray Monochromatic Imaging from Single-spectrum CT via Machine Learning

论文作者

Cong, Wenxiang, De Man, Bruno, Wang, Ge

论文摘要

在临床CT系统中,X射线管排放多色X射线,X射线检测器以当前整合模式运行。该物理过程由能量依赖性的非线性积分方程来准确地描述。但是,非线性模型对于计算有效的解决方案不可逆转,并且通常以radton transforc的形式近似为线性积分模型。这样的近似基本上忽略了能量依赖的信息,并会产生光束硬化伪影。双能CT(DECT)使用两个不同的X射线能光谱扫描一个对象,以获取两个频谱不同的投影数据集以改善成像性能。因此,DECT可以重建能量和材料选择性图像,从而实现单色成像和材料分解。然而,DECT会增加相对于单光谱CT的辐射剂量,系统复杂性和设备成本。在本文中,提出了一种基于机器学习的CT重建方法,用于使用单光谱CT扫描仪进行单色图像重建。具体而言,残留的神经网络(RESNET)模型可用于将CT图像映射到预先指定的能级的单色对应物中。该重新连接经过临床双能量数据的训练,显示出极好的收敛性,最小的损失。训练有素的网络在测试数据上产生高质量的单色图像,相对误差小于0.2%。这项工作在临床DECT应用中具有巨大的潜力,例如组织表征,光束硬化校正和质子治疗计划。

In clinical CT system, the x-ray tube emits polychromatic x-rays, and the x-ray detectors operate in the current-integrating mode. This physical process is accurately described by an energy-dependent non-linear integral equation. However, the non-linear model is not invertible with a computationally efficient solution, and is often approximated as a linear integral model in the form of the Radon transform. Such approximation basically ignores energy-dependent information and would generate beam hardening artifacts. Dual-energy CT (DECT) scans one object using two different x-ray energy spectra for the acquisition of two spectrally distinct projection datasets to improve imaging performance. Thus, DECT can reconstruct energy and material-selective images, realizing monochromatic imaging and material decomposition. Nevertheless, DECT would increase radiation dose, system complexity, and equipment cost relative to single-spectrum CT. In this paper, a machine-learning-based CT reconstruction method is proposed to perform monochromatic image reconstruction using a single-spectrum CT scanner. Specifically, a residual neural network (ResNet) model is adapted to map a CT image to a monochromatic counterpart at a pre-specified energy level. This ResNet is trained on clinical dual-energy data, showing an excellent convergence to a minimal loss. The trained network produces high-quality monochromatic images on testing data, with a relative error of less than 0.2%. This work has great potential in clinical DECT applications such as tissue characterization, beam hardening correction and proton therapy planning.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源