论文标题
通过社会疏远的爵士流行模型来控制最佳免疫力
Optimal immunity control by social distancing for the SIR epidemic model
论文作者
论文摘要
在发现针对SARS-COV-2冠状病毒的疫苗或治疗之前,达到牛群免疫似乎是唯一的中期选择。但是,如果被感染的个体的数量减少并最终仅逐渐消失,那么在流行病结束之前,很大一部分易感性仍可能被感染。在最坏的情况下,未发现疫苗或治疗的最坏情况下,遏制策略可能是最好的政策。为了将新感染的人的数量保持在最低限度,可能的策略是采取严格的遏制措施,以使易感人群的数量保持接近群的免疫力。这样的动作是不现实的,因为遏制只能持续一段有限的时间,而且永远不会持续。在本文中,使用经典的SIR模型,我们在给定有限的时间间隔上确定(部分或总的)遏制策略,该策略最大化了无限范围内的易感个体的数量,或者等效地使在流行病的诅咒中最小化了总感染负担。证明了最佳策略的存在和独特性,后者已充分表征。如果在实践中适用,则这种策略将在理论上导致易敏感的比例增加的30%,对于与从3月至2020年5月相对应的卫生措施相对应的遏制水平,我们还分析了最小干预时间,以达到与群体免疫的固定距离,并显示了与先前问题的关系。提供了示意和验证理论结果的模拟。
Until a vaccine or therapy is found against the SARS-CoV-2 coronavirus, reaching herd immunity appears to be the only mid-term option. However, if the number of infected individuals decreases and eventually fades only beyond this threshold, a significant proportion of susceptible may still be infected until the epidemic is over. A containment strategy is likely the best policy in the worst case where no vaccine or therapy is found. In order to keep the number of newly infected persons to a minimum, a possible strategy is to apply strict containment measures, so that the number of susceptible individuals remains close to herd immunity. Such an action is unrealistic since containment can only last for a finite amount of time and is never total. In this article, using a classical SIR model, we determine the (partial or total) containment strategy on a given finite time interval that maximizes the number of susceptible individuals over an infinite horizon, or equivalently that minimizes the total infection burden during the curse of the epidemic. The existence and uniqueness of the optimal strategy is proved and the latter is fully characterized. If applicable in practice, such a strategy would lead theoretically to an increase by 30% of the proportion of susceptible on an infinite horizon, for a containment level corresponding to the sanitary measures put in place in France from March to May 2020. We also analyze the minimum intervention time to reach a fixed distance from herd immunity, and show the relationship with the previous problem. Simulations are provided that illustrate and validate the theoretical results.