论文标题

较高等级的正常亚组的关键指数

Critical exponents of normal subgroups in higher rank

论文作者

Glorieux, Olivier, Tapie, Samuel

论文摘要

我们研究了更高排名半简单的真实线性谎言组$ g $的离散子组的关键指数。让我们修复$ g $的Lie代数的Cartan子空间$ \ Mathfrak A \ subset \ Mathfrak g $。我们表明,如果$γ<g $是一个离散的组,而$γ'\ triangleleftγ$是zariski密集的正常子组,那么$γ$的极限锥和$γ'$ in $ \ mathfrak a $ comincide。此外,对于所有线性形式$ ϕ:\ mathfrak a \ to \ mathbb r $在此极限锥上呈阳性,$ ϕ $的关键指数满足$ \displayStyletyleΔ__ϕ(γ'\ geq')\ geq'\ geq \ frac 1 2δ__ϕ(γ)$。最终,我们表明,如果$γ'\backslashγ$适合,这些关键指数一致。

We study the critical exponents of discrete subgroups of a higher rank semi-simple real linear Lie group $G$. Let us fix a Cartan subspace $\mathfrak a\subset \mathfrak g$ of the Lie algebra of $G$. We show that if $Γ< G$ is a discrete group, and $Γ' \triangleleft Γ$ is a Zariski dense normal subgroup, then the limit cones of $Γ$ and $Γ'$ in $\mathfrak a$ coincide. Moreover, for all linear form $ϕ: \mathfrak a\to \mathbb R$ positive on this limit cone, the critical exponents in the direction of $ϕ$ satisfy $\displaystyle δ_ϕ(Γ') \geq \frac 1 2 δ_ϕ(Γ)$. Eventually, we show that if $Γ'\backslash Γ$ is amenable, these critical exponents coincide.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源