论文标题
亚波长谐振器的活动系统中的边缘模式
Edge modes in active systems of subwavelength resonators
论文作者
论文摘要
具有扩增和耗散的波散射结构可以通过非热系统进行建模,开放以较小长度尺度控制波的新方法。在这项工作中,我们研究了具有增益和损失的声学系统中拓扑保护边缘状态的现象。我们证明,局部边缘模式出现在亚波长谐振器的周期性结构中,其增益/损耗分布缺陷,并明确计算相应的频率和衰减长度。与Hermitian案例类似,这些边缘模式可以归因于本征模的绕组。在非热式的情况下,拓扑不变性无法进行量化,但仍可以预测局部边缘模式的存在。
Wave scattering structures with amplification and dissipation can be modelled by non-Hermitian systems, opening new ways to control waves at small length scales. In this work, we study the phenomenon of topologically protected edge states in acoustic systems with gain and loss. We demonstrate that localized edge modes appear in a periodic structure of subwavelength resonators with a defect in the gain/loss distribution, and explicitly compute the corresponding frequency and decay length. Similarly to the Hermitian case, these edge modes can be attributed to the winding of the eigenmodes. In the non-Hermitian case, the topological invariants fail to be quantized, but can nevertheless predict the existence of localized edge modes.