论文标题
H3DNET:使用混合几何原始素检测3D对象检测
H3DNet: 3D Object Detection Using Hybrid Geometric Primitives
论文作者
论文摘要
我们介绍了H3DNET,该H3DNET将无色3D点云作为输入,并输出了方向的对象边界框(或BB)及其语义标签的集合。 H3DNET的关键思想是预测一组杂交的几何原料,即BB中心,BB面中心和BB边缘中心。我们通过定义对象和几何原语之间的距离函数来展示如何将预测的几何原始素转换为对象建议。此距离函数可以连续优化对象建议,其局部最小值提供了高保真对象建议。然后,H3DNET利用匹配和改进模块将对象建议分类为检测到的对象,并微调检测到的对象的几何参数。一组几何原始基集不仅提供了比使用单一类型的几何原始图提供更精确的信号,而且还提供了对结果的3D布局的过度约束。因此,H3DNET可以忍受预测的几何原始物中的异常值。我们的模型在两个带有实际3D扫描,扫描仪和Sun RGB-D的大型数据集上实现了最新的3D检测结果。
We introduce H3DNet, which takes a colorless 3D point cloud as input and outputs a collection of oriented object bounding boxes (or BB) and their semantic labels. The critical idea of H3DNet is to predict a hybrid set of geometric primitives, i.e., BB centers, BB face centers, and BB edge centers. We show how to convert the predicted geometric primitives into object proposals by defining a distance function between an object and the geometric primitives. This distance function enables continuous optimization of object proposals, and its local minimums provide high-fidelity object proposals. H3DNet then utilizes a matching and refinement module to classify object proposals into detected objects and fine-tune the geometric parameters of the detected objects. The hybrid set of geometric primitives not only provides more accurate signals for object detection than using a single type of geometric primitives, but it also provides an overcomplete set of constraints on the resulting 3D layout. Therefore, H3DNet can tolerate outliers in predicted geometric primitives. Our model achieves state-of-the-art 3D detection results on two large datasets with real 3D scans, ScanNet and SUN RGB-D.