论文标题
关于磁性入口中的剪切效应的存在
On the existence of shear-current effects in magnetized burgulence
论文作者
论文摘要
通过数值模拟检查了通过磁性剪切电流(MSC)效应来解释剪切流量的可能性。我们的主要诊断是确定湍流磁扩散性张量$ \boldsymbolη$。在我们的设置中,其组件$η_{yx} $的负迹象对于通过SC效应进行连贯的发电机是必需的。为了能够从具有磁性背景湍流的系统中测量湍流传输系数,我们提出了测试场方法(TFM)的扩展,适用于我们的设置,其中压力梯度从动量方程式下降:非线性TFM(NLTFM)。我们的动量方程与汉堡方程有关,所产生的流量称为磁化汉堡。我们同时使用随机动力学和磁性强迫,以模仿没有和同时进行小规模发电机(SSD)的情况。当我们仅在动力学上强迫时,在径向和方位角平均磁场成分中,负$η_{yx} $以指数增长而获得。使用各向同性磁性强迫,现场生长不再是指数级,而NLTFM产生正$η_{yx} $。通过采用一种替代强迫,去除具有较小组分的波形的替代强迫,恢复了指数的增长,但是NLTFM结果并没有显着变化。分析相干SC和不一致的$α$和SC效应的发电机激发条件表明,在大多数情况下,不连贯的效果是发电机的主要驱动因素。我们在模拟中没有发现MSC效应驱动的发电机的证据。
The possibility of explaining shear flow dynamos by a magnetic shear-current (MSC) effect is examined via numerical simulations. Our primary diagnostics is the determination of the turbulent magnetic diffusivity tensor $\boldsymbolη$. In our setup, a negative sign of its component $η_{yx}$ is necessary for coherent dynamo action by the SC effect. To be able to measure turbulent transport coefficients from systems with magnetic background turbulence, we present an extension of the test-field method (TFM), applicable to our setup where the pressure gradient is dropped from the momentum equation: the nonlinear TFM (NLTFM). Our momentum equation is related to Burgers' equation and the resulting flows are referred to as magnetized burgulence. We use both stochastic kinetic and magnetic forcings to mimic cases without and with simultaneous small-scale dynamo action (SSD). When we force only kinetically, negative $η_{yx}$ are obtained with exponential growth in both the radial and azimuthal mean magnetic field components. Using isotropic magnetic forcing, the field growth is no longer exponential, while NLTFM yields positive $η_{yx}$. By employing an alternative forcing from which wavevectors having small components are removed, the exponential growth is recovered, but the NLTFM results do not change significantly. Analyzing the dynamo excitation conditions for the coherent SC and incoherent $α$ and SC effects shows that the incoherent effects are the main drivers of the dynamo in the majority of cases. We find no evidence for MSC-effect-driven dynamos in our simulations.