论文标题
作为决策者,与深度神经网络的随机多echelon库存优化的同时决策
Simultaneous Decision Making for Stochastic Multi-echelon Inventory Optimization with Deep Neural Networks as Decision Makers
论文作者
论文摘要
我们提出了一个框架,该框架使用深层神经网络(DNN)来优化复杂的多核电供应链中的库存决策。我们首先介绍了一般随机多电子库存优化(SMEIO)的成对建模。然后,我们提出一个框架,该框架使用DNN代理直接确定供应链中任何相邻节点之间的订购水平。我们的模型考虑了有限的视野,并说明了初始库存条件。我们的方法适用于各种供应链网络,包括可能包含组装和分配节点的一般拓扑以及具有非线性成本结构的系统。首先,我们通过证明其解决方案接近单个节点和串行供应链网络的最佳解决方案,从而证明了该方法的有效性,该解决方案可用。然后,我们研究了更多的一般供应链网络,发现所提出的方法在目标函数值和与替代方法相比的相互作用数量方面的性能更好。
We propose a framework that uses deep neural networks (DNN) to optimize inventory decisions in complex multi-echelon supply chains. We first introduce pairwise modeling of general stochastic multi-echelon inventory optimization (SMEIO). Then, we present a framework which uses DNN agents to directly determine order-up-to levels between any adjacent pair of nodes in the supply chain. Our model considers a finite horizon and accounts for the initial inventory conditions. Our method is suitable for a wide variety of supply chain networks, including general topologies that may contain both assembly and distribution nodes, and systems with nonlinear cost structures. We first numerically demonstrate the effectiveness of the method by showing that its solutions are close to the optimal solutions for single-node and serial supply chain networks, for which exact methods are available. Then, we investigate more general supply chain networks and find that the proposed method performs better in terms of both objective function values and the number of interactions with the environment compared to alternate methods.