论文标题
$α$ CENTAURI B的Protoplanetary Disc的演变
Evolution of $α$ Centauri B's protoplanetary disc
论文作者
论文摘要
通过流体动力学模拟,我们检查了原球盘的演变左右$α$ CENTAURI B,包括偏心轨道二进制伴侣$α$ CENTAURI A的效果A。最初的圆形轨道圆盘经历了两种类型的偏心率生长。首先,由于二进制轨道的怪异性,偏心率在二进制的轨道时期($ p _ {\ rm orb} $)振荡。其次,对于足够小的圆盘纵横比,该光盘在$ 20 \ $ 20 \,p _ {\ rm orb} $的时间尺度上进行全局强制偏心振荡。这些振荡通过粘性耗散潮湿,使仅在二元轨道时期振荡的光盘留下了准稳态的偏心度。时间平均的全球偏心率在0.05-0.1范围内,稳定状态没有进攻。气体颗粒的尿液彼此对齐。光盘粘度越高,圆盘偏心率越高。通过$ n $体体模拟,我们检查了具有准稳态原球盘的轨道特性形成的行星盘的演变。我们发现,颗粒偏心的平均幅度增加,一旦将其从气盘中解脱出来,它们的围产量就会彼此错位。行星形成所需的低行星碰撞速度表明,要使行星形成发生在由$α$ CENTAURI B约$α$ CENTAURI B形成的行星盘中,表示必须很小,而行星必须是小于2.5美元的Orbital radii hipii hipii niby by 2.5 f.5 \ $ $ $ n um au n au au n au au n au au au n um au a um au a um a um a um a um a um a um a um a um a um a um a um a um a um a um a um a um a um a um au au。存在气体可能会更容易地形成行星。
With hydrodynamical simulations we examine the evolution of a protoplanetary disc around $α$ Centauri B including the effect of the eccentric orbit binary companion $α$ Centauri A. The initially circular orbit disc undergoes two types of eccentricity growth. First, the eccentricity oscillates on the orbital period of the binary, $P_{\rm orb}$, due to the eccentricity of the binary orbit. Secondly, for a sufficiently small disc aspect ratio, the disc undergoes global forced eccentricity oscillations on a time-scale of around $20\,P_{\rm orb}$. These oscillations damp out through viscous dissipation leaving a quasi-steady eccentricity profile for the disc that oscillates only on the binary orbital period. The time-averaged global eccentricity is in the range 0.05-0.1, with no precession in the steady state. The periastrons of the gas particles are aligned to one another. The higher the disc viscosity, the higher the disc eccentricity. With $N$-body simulations we examine the evolution of a disc of planetesimals that forms with the orbital properties of the quasi-steady protoplanetary disc. We find that the average magnitude of the eccentricity of particles increases and their periastrons become misaligned to each other once they decouple from the gas disc. The low planetesimal collision velocity required for planet formation suggests that for planet formation to have occurred in a disc of planetesimals formed from a protoplanetary disc around $α$ Centauri B, said disc's viscosity must be have been small and planet formation must have occurred at orbital radii smaller than about $2.5\,\rm au$. Planet formation may be easier with the presence of gas.