论文标题

概率自动编码器

Probabilistic Autoencoder

论文作者

Böhm, Vanessa, Seljak, Uroš

论文摘要

主体组件分析(PCA)在给定固定组件维度的一类线性模型的情况下,将重建误差最小化。概率PCA通过学习PCA潜在空间权重的概率分布,从而创建生成模型,从而添加了概率结构。自动编码器(AE)最小化固定潜在空间维度的一类非线性模型中的重建误差,在固定维度处胜过PCA。在这里,我们介绍了使用归一化流(NF)学习AE潜在空间权重的概率分布的概率自动编码器(PAE)。 PAE快速且易于训练,并在下游任务中遇到了小的重建错误,样本质量高以及良好的性能。我们将PAE与差异AE(VAE)进行比较,表明PAE训练更快,达到较低的重建误差,并产生良好的样品质量,而无需特殊的调整参数或培训程序。我们进一步证明,PAE是在贝叶斯推断逆问题的背景下执行概率图像重建的下游任务的强大模型,以进行覆盖和降解应用程序。最后,我们将NF的潜在空间密度确定为有希望的离群检测度量。

Principal Component Analysis (PCA) minimizes the reconstruction error given a class of linear models of fixed component dimensionality. Probabilistic PCA adds a probabilistic structure by learning the probability distribution of the PCA latent space weights, thus creating a generative model. Autoencoders (AE) minimize the reconstruction error in a class of nonlinear models of fixed latent space dimensionality and outperform PCA at fixed dimensionality. Here, we introduce the Probabilistic Autoencoder (PAE) that learns the probability distribution of the AE latent space weights using a normalizing flow (NF). The PAE is fast and easy to train and achieves small reconstruction errors, high sample quality, and good performance in downstream tasks. We compare the PAE to Variational AE (VAE), showing that the PAE trains faster, reaches a lower reconstruction error, and produces good sample quality without requiring special tuning parameters or training procedures. We further demonstrate that the PAE is a powerful model for performing the downstream tasks of probabilistic image reconstruction in the context of Bayesian inference of inverse problems for inpainting and denoising applications. Finally, we identify latent space density from NF as a promising outlier detection metric.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源