论文标题
为什么Kerr-Newman Black Hole具有与电子相同的旋风磁比?
Why does the Kerr-Newman black hole have the same gyromagnetic ratio as the electron?
论文作者
论文摘要
我们最近在普朗克量表上提出了确定性的矩阵动力学,用于重力与狄拉克·费米子(Dirac Fermions)相结合,并在所谓的Connes时间中演变。通过将这些动力学的粗糙度范围内的时间间隔比Planck时间大得多,我们得出了时空歧管,量子理论和经典的一般相对性,因为低能量出现了对基础矩阵动力学的近似值。在本文中,我们展示了如何将Yang-Mills仪表字段包括在此Planck量表矩阵动力学中。我们通过适当地修改了先前引入的时空记录“原子”的基本动作来做到这一点(我们现在称为“ Aikyon”]。这是通过修改狄拉克操作员为Yang-Mills方面的“电势”和Yang-Mills收费的“电流”来实现的。我们的工作开辟了一条途径,以将重力与量规场和迪拉克·费米斯统一。我们展示了在基质动力学中的自发定位如何引起一般相对论,并在经典限制下耦合到量规场和相对论点粒子。我们使用这种形式主义来解释一个了不起的事实,即Kerr-Newman Black Hole的Gyromagnetic比率与Dirac Fermion具有相同的价值,两者均是经典价值的两倍。
We have recently proposed a deterministic matrix dynamics at the Planck scale, for gravity coupled to Dirac fermions, evolving in the so-called Connes time. By coarse-graining this dynamics over time intervals much larger than Planck time, we derived the space-time manifold, quantum theory, and classical general relativity, as low energy emergent approximations to the underlying matrix dynamics. In the present article, we show how to include Yang-Mills gauge fields in this Planck scale matrix dynamics. We do this by appropriately modifying the fundamental action for the previously introduced `atom' of space-time-matter [which we now call an `aikyon']. This is achieved by modifying the Dirac operator to include a `potential' for the Yang-Mills aspect, and a `current' for the Yang-Mills charge. Our work opens up an avenue for unification of gravity with gauge-fields and Dirac fermions. We show how spontaneous localisation in the matrix dynamics gives rise to general relativity coupled to gauge-fields and relativistic point particles, in the classical limit. We use this formalism to explain the remarkable fact that the Kerr-Newman black hole has the same value for the gyromagnetic ratio as that for a Dirac fermion, both being twice the classical value.