论文标题
非参数反卷积问题的基准方法:离散案例
A fiducial approach to nonparametric deconvolution problem: discrete case
论文作者
论文摘要
基准推论,如Hannig等人所概括的。 (2016)在离散案例中应用于非参数G模型(EFRON,2016年)。我们提出了一种计算有效的算法来从基准分布中采样,并使用生成的样品来构建点估计和置信区间。我们研究基准分布的理论特性,并在各种情况下进行广泛的模拟。提出的方法就点估计器的平均平方误差和置信区间的覆盖范围而产生良好的统计性能。此外,我们将提出的基准方法应用于使用844例患者的胃腺癌数据来估计每个卫星部位都是恶性肿瘤的概率(Efron,2016年)。
Fiducial inference, as generalized by Hannig et al. (2016), is applied to nonparametric g-modeling (Efron, 2016) in the discrete case. We propose a computationally efficient algorithm to sample from the fiducial distribution, and use the generated samples to construct point estimates and confidence intervals. We study the theoretical properties of the fiducial distribution and perform extensive simulations in various scenarios. The proposed approach yields good statistical performance in terms of the mean squared error of point estimators and the coverage of confidence intervals. Furthermore, we apply the proposed fiducial method to estimate the probability of each satellite site being malignant using gastric adenocarcinoma data with 844 patients (Efron, 2016).