论文标题
MEBAL:用于眼睛眨眼检测和注意力水平估计的多模式数据库
mEBAL: A Multimodal Database for Eye Blink Detection and Attention Level Estimation
论文作者
论文摘要
这项工作介绍了Mebal,这是一个多模式数据库,用于眼眨眼检测和注意力水平估计。眼睛眨眼频率与认知活性有关,并且已经提出了针对许多任务的眼睛眨眼的自动探测器,包括注意水平估计,分析神经分离疾病,欺骗识别,驱动疲劳检测或面对抗刺激性。但是,该领域的大多数现有数据库和算法仅限于仅涉及几百个样品和单个传感器(例如面摄像机)的实验。提出的MEBAL在采集传感器和样品方面改善了以前的数据库。特别是,同时考虑了三个不同的传感器:近红外(NIR)和RGB摄像机以捕获面部手势和脑电图(EEG)频段,以捕获用户和闪烁事件的认知活动。关于MEBAL的大小,它包括6,000个样本和来自38名不同学生的相应关注水平,同时执行了许多不同难度的电子学习任务。除了呈现Mebal外,我们还包括以下方面的初步实验:i)使用卷积神经网络(CNN)具有面部图像的眼睛眨眼检测,ii)根据他们的眼睛眨眼频率对学生的注意水平估计。
This work presents mEBAL, a multimodal database for eye blink detection and attention level estimation. The eye blink frequency is related to the cognitive activity and automatic detectors of eye blinks have been proposed for many tasks including attention level estimation, analysis of neuro-degenerative diseases, deception recognition, drive fatigue detection, or face anti-spoofing. However, most existing databases and algorithms in this area are limited to experiments involving only a few hundred samples and individual sensors like face cameras. The proposed mEBAL improves previous databases in terms of acquisition sensors and samples. In particular, three different sensors are simultaneously considered: Near Infrared (NIR) and RGB cameras to capture the face gestures and an Electroencephalography (EEG) band to capture the cognitive activity of the user and blinking events. Regarding the size of mEBAL, it comprises 6,000 samples and the corresponding attention level from 38 different students while conducting a number of e-learning tasks of varying difficulty. In addition to presenting mEBAL, we also include preliminary experiments on: i) eye blink detection using Convolutional Neural Networks (CNN) with the facial images, and ii) attention level estimation of the students based on their eye blink frequency.