论文标题
标准E_6-变化的亚视频的几何特征
A geometric characterisation of subvarieties of the standard E_6-variety related to the ternions, degenerate split quaternions and sextonions over arbitrary fields
论文作者
论文摘要
本文的主要成就是在任意领域K上对cartan品种某些亚变量的几何表征(与分裂特殊类型E_6相关的标准投影品种)。该特征的特征变种是某些环形射击平面的Veronese代表,而在kiptonions the kiptiations the kiptonions the knosisiations the Splotiatiation the nytonions andonions and Nynipiatiatiation nytonions and sextonions中的特征性变种(其中sextimiations contosiations n sextiation代数)。我们描述了这些品种如何链接到Freudenthal-titts Magic Square,并讨论它们甚至适合它们,当时还允许六次和其他“退化成分代数”,因为代数用来构建正方形。
The main achievement of this paper is a geometric characterisation of certain subvarieties of the Cartan variety (the standard projective variety associated to the split exceptional group of Lie type E_6) over an arbitrary field K. The characterised varieties arise as Veronese representations of certain ring projective planes over quadratic subalgebras of the split octonions over K (among which the sextonions, a 6-dimensional non-associative algebra). We describe how these varieties are linked to the Freudenthal-Tits magic square, and discuss how they would even fit in, when also allowing the sextonions and other "degenerate composition algebras" as the algebras used to construct the square.