论文标题
UMLS-Chestnet:用于放射学发现的深度卷积神经网络,COVID-19在胸部X射线中的差异诊断和定位
UMLS-ChestNet: A deep convolutional neural network for radiological findings, differential diagnoses and localizations of COVID-19 in chest x-rays
论文作者
论文摘要
在这项工作中,我们提出了一种检测放射学发现,其位置和与胸部X射线的差异诊断的方法。与以前专注于少数病理学的工作不同,我们使用映射到统一医学语言系统(UMLS)术语的层次分类法,以识别189个放射学发现,22个差异诊断和122个解剖位置,包括地面玻璃的无情,浸润,浸润,和平化和其他放射学发现与COCEDIBS-COCATAIBLIBLIBLIBLE CAPATIBLE COPATIBLIBLE COMATIBLIBLE。我们在一个92,594个额叶X射线(AP或PA,站立,仰卧或倾向)的大型数据库和第二个数据库中训练该系统,以及由至少一个阳性聚合酶链链反应(PCR)测试鉴定出的Covid-19患者的2,065张额叶图像。参考标签是通过自然语言处理放射学报告获得的。在23,159张测试图像上,提出的神经网络获得了COVID-19的AUC为0.94。据我们所知,这项工作使用了迄今为止COVID-19阳性案例的最大胸部X射线数据集,并且是第一个使用层次标签模式并提供结果的可解释性的案例,不仅是通过使用网络注意力方法来提供结果,而且还指示了导致诊断的放射学发现。
In this work we present a method for the detection of radiological findings, their location and differential diagnoses from chest x-rays. Unlike prior works that focus on the detection of few pathologies, we use a hierarchical taxonomy mapped to the Unified Medical Language System (UMLS) terminology to identify 189 radiological findings, 22 differential diagnosis and 122 anatomic locations, including ground glass opacities, infiltrates, consolidations and other radiological findings compatible with COVID-19. We train the system on one large database of 92,594 frontal chest x-rays (AP or PA, standing, supine or decubitus) and a second database of 2,065 frontal images of COVID-19 patients identified by at least one positive Polymerase Chain Reaction (PCR) test. The reference labels are obtained through natural language processing of the radiological reports. On 23,159 test images, the proposed neural network obtains an AUC of 0.94 for the diagnosis of COVID-19. To our knowledge, this work uses the largest chest x-ray dataset of COVID-19 positive cases to date and is the first one to use a hierarchical labeling schema and to provide interpretability of the results, not only by using network attention methods, but also by indicating the radiological findings that have led to the diagnosis.