论文标题

(CO)凸功能的加权DT-Moduli等效性

Equivalence of Weighted DT-Moduli of (Co)convex Functions

论文作者

Al-Muhja, Malik Saad, Akhadkulov, Habibulla, Ahmad, Nazihah

论文摘要

该论文提出了加权DT模量的新定义。同样,我们获得了平滑度模量等效的一般结果。众所周知,任何$ r \ in \ mathbb {n} _ {\ circ} $,$ 0 <p \ leq \ infty $,$ 1 \ leqη\ leq r $和$ ϕ(x)= \ sqrt {1-x^2} $ (f^{(r)},\ |θ_ {\ mathcal {n}} \ |)_ {w_ {w_ {α,β},p} \ simω^ϕ__ {i,r+1} \; (f^{(R+1)},\ |θ_ {\ Mathcal {n}} \ |)_ {w_ {w_ {α,β},p} $和$ω^ϕ__ {i+η} \; (f,\ |θ_ {\ mathcal {n}} \ |)_ {α,β,p} \ sim \ | θ_ {\ Mathcal {n}} \ |^{ - η}ω^ϕ__ {i,2η} \; (f^{(2η)},\ |θ_ {\ Mathcal {n}} \ |)_ {α+η,β+η,p} $有效。

The paper present new definitions for weighted DT moduli. Similarly, we a general outcome in an equivalence of moduli of smoothness are obtained. It is known that, any $r \in \mathbb{N}_{\circ}$ , $0<p \leq \infty$, $1 \leq η\leq r$ and $ϕ(x)=\sqrt{1-x^2}$, the inequalities $ω^ϕ_{i+1,r} \; (f^{(r)}, \| θ_{\mathcal{N}} \|)_{w_{α, β}, p} \sim ω^ϕ_{i,r+1} \; (f^{(r+1)}, \| θ_{\mathcal{N}} \|)_{w_{α, β}, p}$ and $ω^ϕ_{i+η} \; (f, \| θ_{\mathcal{N}} \|)_{α, β, p} \sim \| θ_{\mathcal{N}} \|^{- η} ω^ϕ_{i, 2 η} \; (f^{(2 η)}, \| θ_{\mathcal{N}} \|)_{α+ η, β+ η, p}$ are valid.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源