论文标题

吸引力抑制模型中的极化

Polarization in Attraction-Repulsion Models

论文作者

Cornacchia, Elisabetta, Singer, Neta, Abbe, Emmanuel

论文摘要

本文介绍了一个意见动力学的模型,在每个时间步骤中,随机选择的代理都会看到他们的意见 - 在[0,1]中以标量为模型 - 取决于局部交互功能。在经典的置信度模型中,当代理人足够近时,他们的意见就会被吸引。拟议的模型通过添加排斥组件来扩展这一点,该组件在足够相似的情况下模拟了意见的影响进一步推动。随着这种排斥组件的添加,在排斥裂解的假设下,结果表明,新的稳定配置出现在经典共识配置之外,即极化配置。更具体地说,证明总共识和总偏振是仅有的两个可能的限制配置。该论文进一步分析了维度1及更高的无限种群制度,并以相变现象的猜测和支持。

This paper introduces a model for opinion dynamics, where at each time step, randomly selected agents see their opinions - modeled as scalars in [0,1] - evolve depending on a local interaction function. In the classical Bounded Confidence Model, agents opinions get attracted when they are close enough. The proposed model extends this by adding a repulsion component, which models the effect of opinions getting further pushed away when dissimilar enough. With this repulsion component added, and under a repulsion-attraction cleavage assumption, it is shown that a new stable configuration emerges beyond the classical consensus configuration, namely the polarization configuration. More specifically, it is shown that total consensus and total polarization are the only two possible limiting configurations. The paper further provides an analysis of the infinite population regime in dimension 1 and higher, with a phase transition phenomenon conjectured and backed heuristically.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源