论文标题
通过模拟和深度学习洪水和碎片流量图打破遥感的极限
Breaking the Limits of Remote Sensing by Simulation and Deep Learning for Flood and Debris Flow Mapping
论文作者
论文摘要
我们提出了一个框架,该框架通过整合深度学习和数值模拟来估算遥感的淹没深度(最大水位)和碎片流诱导的地形变形。水和碎屑流模拟器为各种人工灾害方案生成培训数据。我们表明,基于注意的U-NET和Linknet架构进行了训练的合成数据的回归模型可以预测遥感衍生的变化检测图和数字高程模型的最大水位和地形变形。所提出的框架具有介入能力,因此减轻了遥感图像分析中不可避免的假阴性。我们的框架打破了遥感的局限性,并可以快速估算淹没深度和地形变形,紧急响应的基本信息,包括救援和救济活动。我们对两个灾难事件进行合成和真实数据进行实验,这些灾难事件引起同时洪水和碎屑流,并在定量和定性上证明了我们方法的有效性。
We propose a framework that estimates inundation depth (maximum water level) and debris-flow-induced topographic deformation from remote sensing imagery by integrating deep learning and numerical simulation. A water and debris flow simulator generates training data for various artificial disaster scenarios. We show that regression models based on Attention U-Net and LinkNet architectures trained on such synthetic data can predict the maximum water level and topographic deformation from a remote sensing-derived change detection map and a digital elevation model. The proposed framework has an inpainting capability, thus mitigating the false negatives that are inevitable in remote sensing image analysis. Our framework breaks the limits of remote sensing and enables rapid estimation of inundation depth and topographic deformation, essential information for emergency response, including rescue and relief activities. We conduct experiments with both synthetic and real data for two disaster events that caused simultaneous flooding and debris flows and demonstrate the effectiveness of our approach quantitatively and qualitatively.