论文标题

空间单细胞Omics-DATA的视觉队列比较

Visual cohort comparison for spatial single-cell omics-data

论文作者

Somarakis, Antonios, Ijsselsteijn, Marieke E., Luk, Sietse J., Kenkhuis, Boyd, de Miranda, Noel F. C. C., Lelieveldt, Boudewijn P. F., Höllt, Thomas

论文摘要

通过空间分辨的Omics-DATA使研究人员能够精确区分组织中的细胞类型并探索其空间相互作用,从而深入了解组织功能。为了了解什么原因或恶化疾病并确定相关的生物标志物,临床研究人员会定期进行大规模研究,需要在细胞水平上比较此类数据。在此类研究中,对于数据中的期望很少,探索性数据分析是必要的。在这里,我们提出了一个交互式的视觉分析工作流程,用于比较空间分辨的幻象数据。我们的工作流程允许基于多个详细信息的两个人群进行比较分析,从与复杂的共定位模式相比,简单包含的细胞类型到完整组织图像的个人比较。结果,工作流程可以在工作流程的任何阶段识别划分分化的特征以及离群样本。在工作流程的开发过程中,我们不断与域专家进行咨询。为了显示工作流程的有效性,我们与来自不同应用领域和不同数据方式的域专家进行了多次案例研究。

Spatially-resolved omics-data enable researchers to precisely distinguish cell types in tissue and explore their spatial interactions, enabling deep understanding of tissue functionality. To understand what causes or deteriorates a disease and identify related biomarkers, clinical researchers regularly perform large-scale cohort studies, requiring the comparison of such data at cellular level. In such studies, with little a-priori knowledge of what to expect in the data, explorative data analysis is a necessity. Here, we present an interactive visual analysis workflow for the comparison of cohorts of spatially-resolved omics-data. Our workflow allows the comparative analysis of two cohorts based on multiple levels-of-detail, from simple abundance of contained cell types over complex co-localization patterns to individual comparison of complete tissue images. As a result, the workflow enables the identification of cohort-differentiating features, as well as outlier samples at any stage of the workflow. During the development of the workflow, we continuously consulted with domain experts. To show the effectiveness of the workflow we conducted multiple case studies with domain experts from different application areas and with different data modalities.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源