论文标题
DyHGCN:一个动态的异质图卷积网络,用于学习用户的动态偏好以进行信息扩散预测
DyHGCN: A Dynamic Heterogeneous Graph Convolutional Network to Learn Users' Dynamic Preferences for Information Diffusion Prediction
论文作者
论文摘要
信息扩散预测是理解信息传播过程的基本任务。它在错误信息传播预测和恶意帐户检测中具有广泛的应用。先前的工作要么集中于利用单个扩散序列的上下文,要么在用户之间使用社交网络进行信息扩散预测。但是,不同消息的扩散路径自然构成动态扩散图。一方面,以前的作品不能共同利用社交网络和扩散图进行预测,这不足以模拟扩散过程的复杂性,并导致预测性能不令人满意。对于另一个人来说,他们无法学习用户的动态偏好。直观地,随着时间的流逝,用户的偏好正在发生变化,用户的个人喜好决定了用户是否会重新宣传信息。因此,考虑用户在信息扩散预测中的动态偏好是有益的。 在本文中,我们提出了一种新型的动态异质图卷积网络(DYHGCN),以共同学习社交图和动态扩散图的结构特征。然后,我们将时间信息编码到异质图中,以了解用户的动态偏好。最后,我们应用多头注意力以捕获当前扩散路径的上下文依赖性,以促进信息扩散预测任务。实验结果表明,DyhGCN在三个公共数据集上的最先进模型明显胜过,这表明了所提出的模型的有效性。
Information diffusion prediction is a fundamental task for understanding the information propagation process. It has wide applications in such as misinformation spreading prediction and malicious account detection. Previous works either concentrate on utilizing the context of a single diffusion sequence or using the social network among users for information diffusion prediction. However, the diffusion paths of different messages naturally constitute a dynamic diffusion graph. For one thing, previous works cannot jointly utilize both the social network and diffusion graph for prediction, which is insufficient to model the complexity of the diffusion process and results in unsatisfactory prediction performance. For another, they cannot learn users' dynamic preferences. Intuitively, users' preferences are changing as time goes on and users' personal preference determines whether the user will repost the information. Thus, it is beneficial to consider users' dynamic preferences in information diffusion prediction. In this paper, we propose a novel dynamic heterogeneous graph convolutional network (DyHGCN) to jointly learn the structural characteristics of the social graph and dynamic diffusion graph. Then, we encode the temporal information into the heterogeneous graph to learn the users' dynamic preferences. Finally, we apply multi-head attention to capture the context-dependency of the current diffusion path to facilitate the information diffusion prediction task. Experimental results show that DyHGCN significantly outperforms the state-of-the-art models on three public datasets, which shows the effectiveness of the proposed model.