论文标题

离子溶液的统计场理论

Statistical field theory of ion-molecular solutions

论文作者

Budkov, Yu. A.

论文摘要

在本文中,我总结了我的理论发展,这些发展是在zwitterionic和多极分子的盐溶液的统计领域理论中。基于Hubbard-Stratonovich的积分转换,我代表了在依赖于空间依赖性的波动静电电位上的Zwitterionic和多极分子的稀盐溶液的构型积分。在两种情况下,在平均场近似中,我得出了由外部电荷在解决方案介质中产生的静电电势的全差异自一致的场方程,从而推广了经典的Poisson-Boltzmann方程。我为两种情况提供了通过某些筛选函数表达的点状测试离子的静电电势的一般表达。我得出了在盐zwitterionic溶液中点状测试离子静电电势的分析表达式,从而推广了众所周知的Debye-Hueckel电位。在无盐溶液的情况下,我获得了围绕点状测试离子及其有效溶剂化半径的局部介电介电常数的分析表达式。对于多极分子的盐溶液,我发现长距离的点状测试离子的静电场电位的新振荡行为。我获得了多极溶质的平均四极长度的一般表达。使用随机相近似(RPA),我得出了Zwitterionic和多极分子的大量盐溶液的过量自由能的一般表达式,并分析了它们产生的限制度。当溶液中溶解了几种zwitterions时,我将盐zwitterion溶液理论推广。在这种情况下,在RPA中,我获得了测试zwitterion的溶剂化能的一般表达。

In this article, I summarize my theoretical developments in the statistical field theory of salt solutions of zwitterionic and multipolar molecules. Based on the Hubbard-Stratonovich integral transformation, I represent configuration integrals of dilute salt solutions of zwitterionic and multipolar molecules in the form of functional integrals over the space-dependent fluctuating electrostatic potential. In the mean-field approximation, for both cases, I derive integro-differential self-consistent field equations for the electrostatic potential, generated by the external charges in solutions media, which generalize the classical Poisson-Boltzmann equation. I derive for the both cases a general expression for the electrostatic potential of a point-like test ion, expressed through certain screening functions. I derive an analytical expression for the electrostatic potential of the point-like test ion in a salt zwitterionic solution, generalizing the well known Debye-Hueckel potential. In the salt-free solution case, I obtain analytical expressions for the local dielectric permittivity around the point-like test ion and its effective solvation radius. For the case of salt solutions of multipolar molecules, I find a new oscillating behavior of the electrostatic field potential of the point-like test ion at long distances. I obtain a general expression for the average quadrupolar length of a multipolar solute. Using the random phase approximation (RPA), I derive general expressions for the excess free energy of bulk salt solutions of zwitterionic and multipolar molecules and analyze the limiting regimes resulting from them. I generalize the salt zwitterionic solution theory for the case when several kinds of zwitterions are dissolved in the solution. In this case, within the RPA, I obtain a general expression for the solvation energy of the test zwitterion.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源