论文标题
拥挤的警报!预测未来的人群分布
Over-crowdedness Alert! Forecasting the Future Crowd Distribution
论文作者
论文摘要
近年来,由于其在现实世界中的实际应用,基于视觉的人群分析进行了广泛的研究。在本文中,我们制定了一个新颖的人群分析问题,其中我们旨在预测不久的将来的人群框架的人群视频的连续帧,而没有任何身份注释。研究此研究问题将使有关预测人群动态的应用有益。为了解决这个问题,我们提出了一个全球两流循环网络,该网络利用连续的人群视频框架作为输入及其相应的密度图作为辅助信息,以预测未来的人群分布。此外,为了增强网络的能力,我们使用模拟数据进行预处理合成特定于场景的人群密度图。最后,我们证明我们的框架能够预测不同人群场景的人群分布,并深入研究了应用程序,包括预测未来人群数,预测高密度区域等。
In recent years, vision-based crowd analysis has been studied extensively due to its practical applications in real world. In this paper, we formulate a novel crowd analysis problem, in which we aim to predict the crowd distribution in the near future given sequential frames of a crowd video without any identity annotations. Studying this research problem will benefit applications concerned with forecasting crowd dynamics. To solve this problem, we propose a global-residual two-stream recurrent network, which leverages the consecutive crowd video frames as inputs and their corresponding density maps as auxiliary information to predict the future crowd distribution. Moreover, to strengthen the capability of our network, we synthesize scene-specific crowd density maps using simulated data for pretraining. Finally, we demonstrate that our framework is able to predict the crowd distribution for different crowd scenarios and we delve into applications including predicting future crowd count, forecasting high-density region, etc.