论文标题
共形相关函数的对称性
Symmetries of conformal correlation functions
论文作者
论文摘要
对现代形式的造成自举研究的广泛兴趣的计划是基于数值解决一般的保形场理论,基于一个关键假设,即动力学是在保形的四点交叉方程和阳性条件中编码的。在这封信中,我们建议并验证交叉方程的新型代数属性,该属性为该程序提供了强大的限制。我们显示了各种类型的对称性$ \ cal g $,可以将交叉方程线性转换为$(n)$ vector跨度与$ SO(n)\ rightArrow \ cal g $分支规则和转换满足阳性条件。受$ \ cal g $ -Smmetric交叉方程与阳性条件结合的动力学限制为$ SO(N)$对称案例,而在不引入$ SO(N)$ SO(N)$ SOMETRERINE违反假设的情况下,非直接解决的理论是不可直接解决的。
A program of wide interest in modern conformal bootstrap studies is to numerically solve general conformal field theories, based on a critical assumption that the dynamics is encoded in the conformal four-point crossing equations and positivity condition. In this letter we propose and verify a novel algebraic property of the crossing equations which provides strong restriction for this program. We show for various types of symmetries $\cal G$, the crossing equations can be linearly converted into the $SO(N)$ vector crossing equations associated with the $SO(N)\rightarrow \cal G$ branching rules and the transformations satisfy positivity condition. The dynamics constrained by the $\cal G$-symmetric crossing equations combined with positivity condition degenerates to the $SO(N)$ symmetric cases, while the non-$SO(N)$ symmetric theories are not directly solvable without introducing the $SO(N)$ symmetry breaking assumptions on the spectrum.