论文标题

公平的贝叶斯优化

Fair Bayesian Optimization

论文作者

Perrone, Valerio, Donini, Michele, Zafar, Muhammad Bilal, Schmucker, Robin, Kenthapadi, Krishnaram, Archambeau, Cédric

论文摘要

鉴于机器学习(ML)在我们的生活中的重要性越来越重要,已经提出了几种算法公平技术来减轻ML模型结果的偏见。但是,这些技术中的大多数专门用于迎合一个单一的ML模型家族和公平性的特定定义,从而限制了它们在实践中的适应性。我们引入了一个普遍的约束贝叶斯优化(BO)框架,以优化任何ML模型的性能,同时执行一个或多个公平性约束。 BO是一种模型不合时宜的优化方法,已成功应用于自动调整ML模型的超参数。我们将具有公平限制的BO应用于一系列流行的模型,包括随机森林,梯度增强和神经网络,表明我们只能通过仅对超参数作用来获得准确且公平的解决方案。我们还从经验上表明,我们的方法具有实施特定于模型的公平性约束的专业技术,并且优于学习输入数据公平表示的预处理方法。此外,我们的方法可以与这种专业公平技术协同作用,以调整其超参数。最后,我们研究了公平性与BO选择的超参数之间的关系。我们观察到正则化和无偏模型之间的相关性,解释了为什么在超参数上作用会导致ML模型良好并且是公平的。

Given the increasing importance of machine learning (ML) in our lives, several algorithmic fairness techniques have been proposed to mitigate biases in the outcomes of the ML models. However, most of these techniques are specialized to cater to a single family of ML models and a specific definition of fairness, limiting their adaptibility in practice. We introduce a general constrained Bayesian optimization (BO) framework to optimize the performance of any ML model while enforcing one or multiple fairness constraints. BO is a model-agnostic optimization method that has been successfully applied to automatically tune the hyperparameters of ML models. We apply BO with fairness constraints to a range of popular models, including random forests, gradient boosting, and neural networks, showing that we can obtain accurate and fair solutions by acting solely on the hyperparameters. We also show empirically that our approach is competitive with specialized techniques that enforce model-specific fairness constraints, and outperforms preprocessing methods that learn fair representations of the input data. Moreover, our method can be used in synergy with such specialized fairness techniques to tune their hyperparameters. Finally, we study the relationship between fairness and the hyperparameters selected by BO. We observe a correlation between regularization and unbiased models, explaining why acting on the hyperparameters leads to ML models that generalize well and are fair.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源