论文标题
langevin的2D Yang-Mills度量
Langevin dynamic for the 2D Yang-Mills measure
论文作者
论文摘要
我们定义了与随机的阳米尔米尔热流相关的自然状态空间和马尔可夫的过程。为了实现这一目标,我们首先引入了分布连接的空间,沿足够规律的曲线(Wilson Loop可观察)为此,相关量规变换群的作用既明确又满足良好的连续性属性。所需的状态空间作为该组动作下的轨道的相应空间获得,并在配备天然的Hausdorff度量时被证明是波兰空间。为了构建马尔可夫过程,我们表明随机阳米尔斯的热流量在我们的连接空间中取值,并使用引入时间依赖的量规变换的“ deturck trick”来显示法律转换下的解决方案的不变性。我们为杨麦片热流解决的主要工具是规则性结构的理论,在此过程中,我们还开发了一个“无基础”框架,用于在矢量价值噪声的背景下应用规律性结构理论 - 这为解释以前的几个结构提供了一个概念框架,我们希望该框架具有独立的利益。
We define a natural state space and Markov process associated to the stochastic Yang-Mills heat flow in two dimensions. To accomplish this we first introduce a space of distributional connections for which holonomies along sufficiently regular curves (Wilson loop observables) and the action of an associated group of gauge transformations are both well-defined and satisfy good continuity properties. The desired state space is obtained as the corresponding space of orbits under this group action and is shown to be a Polish space when equipped with a natural Hausdorff metric. To construct the Markov process we show that the stochastic Yang-Mills heat flow takes values in our space of connections and use the "DeTurck trick" of introducing a time dependent gauge transformation to show invariance, in law, of the solution under gauge transformations. Our main tool for solving for the Yang-Mills heat flow is the theory of regularity structures and along the way we also develop a "basis-free" framework for applying the theory of regularity structures in the context of vector-valued noise - this provides a conceptual framework for interpreting several previous constructions and we expect this framework to be of independent interest.