论文标题

次级Zeta功能的计算

Computation of the secondary zeta function

论文作者

de Reyna, Juan Arias

论文摘要

次级zeta函数$ z(s)= \ sum_ {n = 1}^\inftyα_n^{ - s} $,其中$ρ_n= \ frac12+iα_n$是Zeta的Zeta的零($ \ im(ρ)> 0 $,扩展到Meromorphic Plands the hole Complece the hole Complect phore complect。如果我们假设Riemann假设数字$α_n=γ_n$,但我们不假定RH。我们给出了一种算法来计算dirichlet系列$ z(s)= \ sum_ {n = 1}^\inftyα_n^{ - s} $的分析延长,用于$ s $的所有值和给定的精度。

The secondary zeta function $Z(s)=\sum_{n=1}^\inftyα_n^{-s}$, where $ρ_n=\frac12+iα_n$ are the zeros of zeta with $\Im(ρ)>0$, extends to a meromorphic function on the hole complex plane. If we assume the Riemann hypothesis the numbers $α_n=γ_n$, but we do not assume the RH. We give an algorithm to compute the analytic prolongation of the Dirichlet series $Z(s)=\sum_{n=1}^\infty α_n^{-s}$, for all values of $s$ and to a given precision.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源