论文标题
次级Zeta功能的计算
Computation of the secondary zeta function
论文作者
论文摘要
次级zeta函数$ z(s)= \ sum_ {n = 1}^\inftyα_n^{ - s} $,其中$ρ_n= \ frac12+iα_n$是Zeta的Zeta的零($ \ im(ρ)> 0 $,扩展到Meromorphic Plands the hole Complece the hole Complect phore complect。如果我们假设Riemann假设数字$α_n=γ_n$,但我们不假定RH。我们给出了一种算法来计算dirichlet系列$ z(s)= \ sum_ {n = 1}^\inftyα_n^{ - s} $的分析延长,用于$ s $的所有值和给定的精度。
The secondary zeta function $Z(s)=\sum_{n=1}^\inftyα_n^{-s}$, where $ρ_n=\frac12+iα_n$ are the zeros of zeta with $\Im(ρ)>0$, extends to a meromorphic function on the hole complex plane. If we assume the Riemann hypothesis the numbers $α_n=γ_n$, but we do not assume the RH. We give an algorithm to compute the analytic prolongation of the Dirichlet series $Z(s)=\sum_{n=1}^\infty α_n^{-s}$, for all values of $s$ and to a given precision.