论文标题

与$(\ Mathbb {r}^{d},+)$相关的Denjoy-Carleman类中的分解。

Factorization in Denjoy-Carleman classes associated to representations of $(\mathbb{R}^{d},+)$

论文作者

Debrouwere, Andreas, Prangoski, Bojan, Vindas, Jasson

论文摘要

对于两种类型的中等增长表示形式,$(\ Mathbb {r}^d,+)$依次完成局部凸出的Hausdorff空间(包括F-陈述[J. funct.262(2012),667-681]它们尤其是我们的分解定理[sublyem salization。

For two types of moderate growth representations of $(\mathbb{R}^d,+)$ on sequentially complete locally convex Hausdorff spaces (including F-representations [J. Funct. Anal. 262 (2012), 667-681], we introduce Denjoy-Carleman classes of ultradifferentiable vectors and show a strong factorization theorem of Dixmier-Malliavin type for them. In particular, our factorization theorem solves [Conjecture 6.; J. Funct. Anal. 262 (2012), 667-681] for analytic vectors of representations of $G =(\mathbb{R}^d,+)$. As an application, we show that various convolution algebras and modules of ultradifferentiable functions satisfy the strong factorization property.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源