论文标题

kibble-zurek在量子速度限制中的缩放尺度,以换取绝热性的快捷方式

Kibble-Zurek scaling in quantum speed limits for shortcuts to adiabaticity

论文作者

Puebla, Ricardo, Deffner, Sebastian, Campbell, Steve

论文摘要

几何量子速度限制量化量子状态可以改变的速率与在演变过程中消耗的资源之间的权衡。抵绝热的驾驶是从快捷方式到绝热性到加快量子动态的独特工具,同时完全抑制了非平衡激发。我们表明,经历量子相变的反绝热驱动的系统的量子速度极限通过正确预测从绝热到脉冲制度的过渡,完全编码了千禧年的机制。我们的发现已在三种情况下,即横向场,Landau-Zener和Lipkin-Meshkov-Glick模型。

Geometric quantum speed limits quantify the trade-off between the rate with which quantum states can change and the resources that are expended during the evolution. Counterdiabatic driving is a unique tool from shortcuts to adiabaticity to speed up quantum dynamics while completely suppressing nonequilibrium excitations. We show that the quantum speed limit for counterdiabatically driven systems undergoing quantum phase transitions fully encodes the Kibble-Zurek mechanism by correctly predicting the transition from adiabatic to impulse regimes. Our findings are demonstrated for three scenarios, namely the transverse field Ising, the Landau-Zener, and the Lipkin-Meshkov-Glick models.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源