论文标题

最小的忠实表示,自由2步尼尔氏谎言lie代数$ r $

Minimal faithful representations of the free 2-step nilpotent Lie algebra of the rank $r$

论文作者

Cagliero, Leandro, Rojas, Nadina

论文摘要

给定有限的尺寸为lie代数$ \ mathfrak {g} $,令$ \ m athfrak {z}(\ m athfrak {g})$表示$ \ mathfrak {g} $的中心,让$μ(\ mathfrak {g})$是最小的diseension $ feiths $ a $ {g。在本文中,我们获得$μ(\ Mathcal {l} _ {r,2})$,其中$ \ Mathcal {l} _ {r,k} $是免费的$ k $ k $ - step nilpotent lie lie lie like like like like like like $ r $。特别是我们证明$μ(\ Mathcal {l} _ {r,2})= \ left \ lceil \ lceil \ sqrt {2r(r-1)} \ right \ rceil + rceil + 2 $ for $ r \ geq 4 $。事实证明,$μ(\ Mathcal {l} _ {r,2})\simμ\ big(\ Mathfrak {Z}(\ Mathcal {l} _ {r,2})\ big)\ big)\ sim 2 \ sim 2 \ sqrt { $ r \ to \ infty $),我们提供了一些证据表明,对于任何$ k $而言,对于$ \ mathcal {l} _ {l} _ {r,k} $,这可能比$μ(\ nathcal {l} _ {r,k})$(用于固定$ k $ k $ k $ k $ k $ k $ k $ k $ k $ y MATHCAL {l MATHCAL {l} _ $ \ dim \ Mathcal {l} _ {r,k} $。

Given a finite dimensional Lie algebra $\mathfrak{g}$, let $\mathfrak{z}(\mathfrak{g})$ denote the center of $\mathfrak{g}$ and let $μ(\mathfrak{g})$ be the minimal possible dimension for a faithful representation of $\mathfrak{g}$. In this paper we obtain $μ(\mathcal{L}_{r,2})$, where $\mathcal{L}_{r,k}$ is the free $k$-step nilpotent Lie algebra of rank $r$. In particular we prove that $μ(\mathcal{L}_{r,2})= \left\lceil \sqrt{2r(r-1)} \right\rceil + 2$ for $r \geq 4$. It turns out that $μ(\mathcal{L}_{r,2}) \simμ\big(\mathfrak{z}(\mathcal{L}_{r,2})\big) \sim 2\sqrt{\dim\mathcal{L}_{r,2}} $ (as $r\to\infty$) and we present some evidence that this could be true for $\mathcal{L}_{r,k}$ for any $k$, this is considerably lower than the known bounds for $μ(\mathcal{L}_{r,k})$, which are (for fixed $k$) polynomial in $\dim\mathcal{L}_{r,k}$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源