论文标题
对双素素和二进制戈德巴赫的硬木材猜想是真的
The Hardy-Littlewood conjectures on the twin primes and the binary Goldbach problem are true
论文作者
论文摘要
Hardy和Littlewood的著名猜想为双子素数的计数功能提供了渐近公式。我们通过根据von Mangoldt函数及其不完整形式表示的计数函数的有限ramanujan扩展,给出了这种公式的无条件证明。我们以一种完全相似的方式,在任何偶数整数的表示形式上求解了共轭猜想。
A celebrated conjecture of Hardy and Littlewood provides with an asymptotic formula for the counting function of the twin primes. We give an unconditional proof of such a formula by means of a finite Ramanujan expansion of the counting function expressed in terms of the von Mangoldt function and its incomplete form. In a completely analogous way, we solve the conjugate conjecture on the representations of any even integer as the sum of two prime numbers.