论文标题

Dirac节点线的作用和在外延IIRO2薄膜的高自旋大厅电导率上的应变

Role of Dirac nodal lines and strain on the high spin Hall conductivity of epitaxial IrO2 thin films

论文作者

Bose, Arnab, Nelson, Jocienne N., Zhang, Xiyue S., Jain, Rakshit, Schlom, D. G., Ralph, D. C., Muller, D. A., Shen, K. M., Buhrman, R. A.

论文摘要

由于在某些重金属元素中发现了“巨大”的自旋大厅效应(SHE)以来,一直在努力识别和开发新的且技术上可行的基于重金属的薄膜材料,这些材料可以产生具有更高效率的旋转电流,以发挥旋转轨道摩尔旋torques(SOT),以在邻近的铁磁纳米构造上发挥旋转式扭矩(SOT)。同时,对旋转电流的基础研究进行了广泛的基础研究,这些研究可能是由稳健的,固有的自旋轨道相互作用(SOI)在更奇特的系统中产生的,包括拓扑绝缘剂,过渡金属二进制构源,并具有破碎的结晶对称性,WEYL和DIRAC的损坏,WEYL和DIRAC半径,无差异电子兴奋会受到损失的托架和对材料的保护。在这里,我们通过(001)和(110)正常膜中的拓扑半学IRO2研究了强大的SOT,它们表现出明显不同的优势。角度分辨的光发射光谱研究表明,IRO2在频带结构中表现出DIRAC节点线(DNL),这可以实现很高的自旋霍尔电导率(SHC)。 (001)薄膜表现出异常高的阻尼,例如扭矩效率,范围从0.45在293 K到30 K时的0.65,这使SHC的下限设置为比理论预测高十倍且相反的迹象。我们观察到在各向异性拉紧(110)膜中SHC的大幅度降低,这表明(001)膜中存在并导致SHC的DNL由于(110)膜中的大型各向异性菌株而受到破坏和损失,这反过来降低了SHC。在此狄拉克半学的室温下,SHC的价值非常大,对于实际应用来说可能非常有前途。

Since the discovery of a 'giant' spin Hall effect (SHE) in certain heavy metal elements there has been an intense effort to identify and develop new and technologically viable, heavy-metal-based thin film materials that could generate spin currents with even greater efficiency to exert spin-orbit torques (SOT) on adjacent ferromagnetic nanostructures. In parallel, there have been wide ranging fundamental studies of the spin currents that can arise from robust, intrinsic spin-orbit interaction (SOI) effects in more exotic systems including topological insulators, transition metal dichalcogenides with broken crystalline symmetry, Weyl and Dirac semimetals where gapless electronic excitations are protected by topology and symmetry. Here we experimentally study strong SOT from the topological semimetal IrO2 in (001) and (110) normal films, which exhibit distinctly different SHE strengths. Angle resolved photoemission spectroscopy studies have shown IrO2 exhibits Dirac nodal lines (DNL) in the band structure, which could enable a very high spin Hall conductivity (SHC). The (001) films exhibit exceptionally high damping like torque efficiency ranging from 0.45 at 293 K to 0.65 at 30 K which sets the lower bound of SHC that is ten times higher and of opposite sign than the theoretical prediction. We observe a substantial reduction of SHC in anisotropically strained (110) films, which suggests that the DNLs that are present in the (001) films and contribute to SHC, are disrupted and gapped due to the large anisotropic strain in (110) films, which in turn significantly lowers SHC. Very large value of SHC at room temperature of this Dirac semimetal could be very promising for the practical application.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源