论文标题

在嘈杂的合成光谱图中seti的窄带信号定位

Narrow-Band Signal Localization for SETI on Noisy Synthetic Spectrogram Data

论文作者

Brzycki, Bryan, Siemion, Andrew P. V., Croft, Steve, Czech, Daniel, DeBoer, David, DeMarines, Julia, Drew, Jamie, Gajjar, Vishal, Isaacson, Howard, Lacki, Brian, Lebofsky, Matthew, MacMahon, David H. E., de Pater, Imke, Price, Danny C., Worden, S. Pete

论文摘要

如今,寻找外星智能(SETI)高度取决于我们在射电望远镜观察中检测有趣的候选信号或技术签名的能力,并将其与人类无线电频率干扰(RFI)区分开来。当前的信号搜索管道在强度频谱图中查找信号作为时间和频率的函数(可以将其视为图像),但在单个数据框中识别多个信号方面往往差异很差。当与明亮的高信号噪声比(SNR)信号相同的框架中有昏暗的信号时,这尤其明显。在这项工作中,我们使用卷积神经网络(CNN)作为一种计算有效的方法来解决此问题,用于将信号定位在合成观察中,类似于通过使用绿色银行望远镜进行突破性收集的数据。我们生成两个合成数据集,第一个数据集在各种SNR级别上,一个恰好一个信号,第二个信号恰好是两个信号,其中一个代表RFI。我们发现,一个具有稳定卷积的残留CNN,并使用多个图像归一化,因为输入优于更基本的CNN,最大池在输入上只有一个归一化。训练每个模型在较小的SNR水平下的较小训练数据上训练会导致模型性能显着提高,从而将均方根误差至少在25 dB时至少3倍。尽管每个模型都会产生具有重大错误的异常值,但这些结果表明,使用CNN分析信号位置是有希望的,尤其是在挤满了多个信号的图像帧中。

As it stands today, the search for extraterrestrial intelligence (SETI) is highly dependent on our ability to detect interesting candidate signals, or technosignatures, in radio telescope observations and distinguish these from human radio frequency interference (RFI). Current signal search pipelines look for signals in spectrograms of intensity as a function of time and frequency (which can be thought of as images), but tend to do poorly in identifying multiple signals in a single data frame. This is especially apparent when there are dim signals in the same frame as bright, high signal-to-noise ratio (SNR) signals. In this work, we approach this problem using convolutional neural networks (CNN) as a computationally efficient method for localizing signals in synthetic observations resembling data collected by Breakthrough Listen using the Green Bank Telescope. We generate two synthetic datasets, the first with exactly one signal at various SNR levels and the second with exactly two signals, one of which represents RFI. We find that a residual CNN with strided convolutions and using multiple image normalizations as input outperforms a more basic CNN with max pooling trained on inputs with only one normalization. Training each model on a smaller subset of the training data at higher SNR levels results in a significant increase in model performance, reducing root mean square errors by at least a factor of 3 at an SNR of 25 dB. Although each model produces outliers with significant error, these results demonstrate that using CNNs to analyze signal location is promising, especially in image frames that are crowded with multiple signals.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源