论文标题

基于视觉的运动学和姿势估算速滑机器人

Visual-based Kinematics and Pose Estimation for Skid-Steering Robots

论文作者

Zuo, Xingxing, Zhang, Mingming, Wang, Mengmeng, Chen, Yiming, Huang, Guoquan, Liu, Yong, Li, Mingyang

论文摘要

为了构建商业机器人,由于其制造简单性和独特的机制,稳定机械设计的流行程度更高。但是,这些也会在软件和算法设计上引起重大挑战,尤其是对于姿势估计(即确定机器人的旋转和位置)的滑雪机器人,因为它们会以不可避免的防滑而改变其方向。为了解决这个问题,我们提出了一个概率的滑动窗口估计器,该估计量使用单眼相机,车轮编码器和可选的惯性测量单元(IMU),使用速溶机器人。具体而言,我们通过轨道瞬时旋转中心(ICR)和校正因子和校正因素明确模拟了慢速机器人的运动学,这些因素和校正因素能够补偿轨道相互作用的复杂性,机械设计,地形和平稳性的不完善性,以防止在线降低机器人的长期范围,并估计机器人的长期效果,并及时及时。以姿势估计状态紧密耦合。更重要的是,我们对本文的不同传感器和设计配置进行了深入的可观察性分析,该分析为我们提供了理论工具,可以在构建真实的商业机器人时做出正确的选择。在我们的实验中,我们通过模拟测试和现实世界实验验证了所提出的方法,这表明我们的方法比广泛的边缘优于竞争方法。

To build commercial robots, skid-steering mechanical design is of increased popularity due to its manufacturing simplicity and unique mechanism. However, these also cause significant challenges on software and algorithm design, especially for the pose estimation (i.e., determining the robot's rotation and position) of skid-steering robots, since they change their orientation with an inevitable skid. To tackle this problem, we propose a probabilistic sliding-window estimator dedicated to skid-steering robots, using measurements from a monocular camera, the wheel encoders, and optionally an inertial measurement unit (IMU). Specifically, we explicitly model the kinematics of skid-steering robots by both track instantaneous centers of rotation (ICRs) and correction factors, which are capable of compensating for the complexity of track-to-terrain interaction, the imperfectness of mechanical design, terrain conditions and smoothness, etc. To prevent performance reduction in robots' long-term missions, the time- and location- varying kinematic parameters are estimated online along with pose estimation states in a tightly-coupled manner. More importantly, we conduct in-depth observability analysis for different sensors and design configurations in this paper, which provides us with theoretical tools in making the correct choice when building real commercial robots. In our experiments, we validate the proposed method by both simulation tests and real-world experiments, which demonstrate that our method outperforms competing methods by wide margins.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源