论文标题
雷利 - 泰勒湍流中的比例相互作用和各向异性
Scale interactions and anisotropy in Rayleigh-Taylor turbulence
论文作者
论文摘要
我们通过在没有傅立叶变换的物理空间中的粗粒度来研究瑞利 - 泰勒(RT)流中的能量尺度转移,从而可以沿垂直方向进行刻度分析。两个过程负责跨尺度的动能通量:baropyclal工作$λ$,这是由于大规模压力梯度作用于密度和速度的小规模,并且由于多尺度的速度,变形工作$π$。我们的粗粒分析表明,这些通量如何表现出二次二次的自相似演化,类似于RT混合层。我们发现,$λ$是势能的渠道,将能量从最大的尺度转移到惯性范围内的较小尺度,$π$接管了。在3D中,$π$将持续的级联持续到较小的尺度,而在2d $π$中,尽管在2D可变密度流中缺乏涡度保守性,但仍将能量重新汇回了较大的尺度。这引起了2D-RT(3D中不存在)的正反馈回路,其中混合层的生长和相关的势能释放相对于3D增强,这解释了2D模拟中经常观察到的较大的$α$值。尽管2D中的体积动能水平较高,但小的惯性尺度弱于3D。此外,与3D形成鲜明对比的是,2D中的净高档级联反应倾向于使大规模流动。我们的发现表明,正如通常所声称的那样,在3D-RT中缺乏净高档能量转移;大规模气泡和峰值的生长不是由于“合并”,而是仅由于乳化作用$λ$。
We study energy scale-transfer in Rayleigh-Taylor (RT) flows by coarse-graining in physical space without Fourier transforms, allowing scale analysis along vertical direction. Two processes are responsible for kinetic energy flux across scales: baropycnal work $Λ$, due to large-scale pressure gradients acting on small-scales of density and velocity, and deformation work $Π$, due to multi-scale velocity. Our coarse-graining analysis shows how these fluxes exhibit self-similar evolution that is quadratic-in-time, similar to RT mixing layer. We find that $Λ$ is a conduit for potential energy, transferring energy non-locally from the largest scales to smaller scales in the inertial range where $Π$ takes over. In 3D, $Π$ continues a persistent cascade to smaller scales, whereas in 2D $Π$ re-channels the energy back to larger scales despite the lack of vorticity conservation in 2D variable density flows. This gives rise to a positive feedback loop in 2D-RT (absent in 3D) in which mixing layer growth and the associated potential energy release are enhanced relative to 3D, explaining the oft-observed larger $α$ values in 2D simulations. Despite higher bulk kinetic energy levels in 2D, small inertial scales are weaker than in 3D. Moreover, the net upscale cascade in 2D tends to isotropize the large-scale flow, in stark contrast to 3D. Our findings indicate the absence of net upscale energy transfer in 3D-RT as is often claimed; growth of large-scale bubbles and spikes is not due to "mergers" but solely due to baropycnal work $Λ$.