论文标题
Clebsch-Gordan系数的改进递归计算
Improved Recursive Computation of Clebsch-Gordan Coefficients
论文作者
论文摘要
Clebsch-Gordan(C-G)系数的快速,准确和稳定的计算始终是可取的,例如,在光散射模拟中,多极场的翻译,量子物理和化学。当前用于计算C-G系数的递归方法对于由于数值溢出或底流而导致的大量量子数通常不稳定。在本文中,我们提出了一种改进的方法,即所谓的标志性复发,用于C-G系数的递归计算。结果表明,所提出的方法可以显着提高计算的稳定性而不会失去其效率,即使使用非常大的量子数也能为C-G系数产生准确的值。
Fast, accurate, and stable computation of the Clebsch-Gordan (C-G) coefficients is always desirable, for example, in light scattering simulations, the translation of the multipole fields, quantum physics and chemistry. Current recursive methods for computing the C-G coefficients are often unstable for large quantum numbers due to numerical overflow or underflow. In this paper, we present an improved method, the so-called sign-exponent recurrence, for the recursive computation of C-G coefficients. The result shows that the proposed method can significantly improve the stability of the computation without losing its efficiency, producing accurate values for the C-G coefficients even with very large quantum numbers.