论文标题

ENK:卷积编码时间信息

EnK: Encoding time-information in convolution

论文作者

Singh, Avinash Kumar, Lin, Chin-Teng

论文摘要

深度学习技术的最新发展引起了脑电图信号的解码和分类的关注。尽管使用了脑电图信号的不同功能进行了几项努力,但重大的研究挑战是将时间依赖的功能与本地和全球功能结合使用。已经做出了几项努力,以重塑深度学习卷积神经网络(CNN),以通过合并手工制作的功能,将输入数据切成较小的时间窗口和经常性卷积来捕获时间依赖性信息。但是,这些方法部分解决了问题,但同时阻碍了CNN从数据中可能存在的未知信息中学习的能力。为了解决这个问题,我们提出了一个编码内核(ENK)方法的新型时间,该方法引入了CNN卷积操作期间的时间信息的增加。 ENK编码的信息允许CNN学习与本地和全局功能有关的时间相关功能。我们在几个EEG数据集上进行了广泛的实验:认知冲突(CC),物理人类机器人协作(PHRC),P300视觉诱发电位,与运动相关的皮质电位(MRCP)。 ENK的表现优于艺术品的最先进12 \%(F1分数)。此外,ENK方法仅需要一个附加参数才能学习,并且可以将其应用于几乎所有的CNN体​​系结构,并以最少的努力应用。这些结果支持我们的方法论,并在通常的时间序列数据的背景下表现出了提高CNN性能的高潜力。

Recent development in deep learning techniques has attracted attention in decoding and classification in EEG signals. Despite several efforts utilizing different features of EEG signals, a significant research challenge is to use time-dependent features in combination with local and global features. There have been several efforts to remodel the deep learning convolution neural networks (CNNs) to capture time-dependency information by incorporating hand-crafted features, slicing the input data in a smaller time-windows, and recurrent convolution. However, these approaches partially solve the problem, but simultaneously hinder the CNN's capability to learn from unknown information that might be present in the data. To solve this, we have proposed a novel time encoding kernel (EnK) approach, which introduces the increasing time information during convolution operation in CNN. The encoded information by EnK lets CNN learn time-dependent features in-addition to local and global features. We performed extensive experiments on several EEG datasets: cognitive conflict (CC), physical-human robot collaboration (pHRC), P300 visual-evoked potentials, movement-related cortical potentials (MRCP). EnK outperforms the state-of-art by 12\% (F1 score). Moreover, the EnK approach required only one additional parameter to learn and can be applied to a virtually any CNN architectures with minimal efforts. These results support our methodology and show high potential to improve CNN performance in the context of time-series data in general.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源