论文标题

深图对比表示学习

Deep Graph Contrastive Representation Learning

论文作者

Zhu, Yanqiao, Xu, Yichen, Yu, Feng, Liu, Qiang, Wu, Shu, Wang, Liang

论文摘要

如今的图表表示学习是分析图形结构化数据的基础。受对比方法的最新成功的启发,在本文中,我们通过利用节点级别的对比度目标来提出一个新颖的框架,以实现无监督的图形表示学习。具体而言,我们通过腐败生成两个图表,并通过在这两个视图中最大化节点表示的共识来学习节点表示。为了为对比目标提供不同的节点上下文,我们提出了一种混合方案,用于在结构和属性级别上生成图表。此外,我们从两个角度,相互信息和经典的三胞胎损失中提供了理论上的理由。我们使用各种现实世界数据集对偏置和归纳学习任务进行经验实验。实验实验表明,尽管具有简单性,但我们提出的方法始终以大边缘优于现有的最新方法。此外,我们的无监督方法甚至超过了其在跨性务任务上的监督同行,这表明了其在现实世界中的巨大潜力。

Graph representation learning nowadays becomes fundamental in analyzing graph-structured data. Inspired by recent success of contrastive methods, in this paper, we propose a novel framework for unsupervised graph representation learning by leveraging a contrastive objective at the node level. Specifically, we generate two graph views by corruption and learn node representations by maximizing the agreement of node representations in these two views. To provide diverse node contexts for the contrastive objective, we propose a hybrid scheme for generating graph views on both structure and attribute levels. Besides, we provide theoretical justification behind our motivation from two perspectives, mutual information and the classical triplet loss. We perform empirical experiments on both transductive and inductive learning tasks using a variety of real-world datasets. Experimental experiments demonstrate that despite its simplicity, our proposed method consistently outperforms existing state-of-the-art methods by large margins. Moreover, our unsupervised method even surpasses its supervised counterparts on transductive tasks, demonstrating its great potential in real-world applications.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源