论文标题

使用具有随机变化系数的ODE模拟脑节律

Simulating brain rhythms using an ODE with stochastically varying coefficients

论文作者

Ambrosio, Benjamin, Young, Lai-Sang

论文摘要

大脑在各种频带中产生节奏。有些可能是神经元过程的副产品。其他人被认为是自上而下的。这些节奏完全自然地产生,具有可识别的节奏,但在数学意义上它们远非周期性。它们产生的信号是宽带,发作性的,在频率和相位徘徊的信号;节奏来来往往,降解和再生。具有这些特征的节奏与周期性,准周期性或在存在布朗噪声的情况下的周期性运动或周期性运动不匹配标准的动态系统范例。到目前为止,它们仅使用数百个集成和开火神经元的网络才能令人满意地再现。在本文中,我们解决了是否可以通过更简单的动态系统生成具有这些属性的信号的数学问题。使用具有受Fitzhugh-Nagumo模型启发的两个变量的ode,并随机改变了三个参数,以控制降解的大小,频率和程度,我们能够复制这些自然脑节律的定性特征。在当地人群中,将两个变量视为典型神经元的兴奋性和抑制性电导,我们的模型产生的结果非常类似于实际皮质中的γ波段活性,包括在实验中看到的E和I-Currents的瞬间平衡。

The brain produces rhythms in a variety of frequency bands. Some are likely by-products of neuronal processes; others are thought to be top-down. Produced entirely naturally, these rhythms have clearly recognizable beats, but they are very far from periodic in the sense of mathematics. They produce signals that are broad-band, episodic, wandering in magnitude, in frequency and in phase; the rhythm comes and goes, degrading and regenerating. Rhythms with these characteristics do not match standard dynamical systems paradigms of periodicity, quasi-periodicity, or periodic motion in the presence of a Brownian noise. Thus far they have been satisfactorily reproduced only using networks of hundreds of integrate-and-fire neurons. In this paper, we tackle the mathematical question of whether signals with these properties can be generated from simpler dynamical systems. Using an ODE with two variables inspired by the FitzHugh-Nagumo model, and varying randomly three parameters that control the magnitude, frequency and degree of degradation, we were able to replicate the qualitative characteristics of these natural brain rhythms. Viewing the two variables as Excitatory and Inhibitory conductances of a typical neuron in a local population, our model produces results that closely resemble gamma-band activity in real cortex, including the moment-to-moment balancing of E and I-currents seen in experiments.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源