论文标题

光谱Waldhausen类别,$ S_ \ bullet $ -construction和Dennis Trace

Spectral Waldhausen categories, the $S_\bullet$-construction, and the Dennis trace

论文作者

Campbell, Jonathan A., Lind, John A., Malkiewich, Cary, Ponto, Kate, Zakharevich, Inna

论文摘要

We give an explicit point-set construction of the Dennis trace map from the $K$-theory of endomorphisms $K\mathrm{End}(\mathcal{C})$ to topological Hochschild homology $\mathrm{THH}(\mathcal{C})$ for any spectral Waldhausen category $\mathcal{C}$.我们描述了必要的技术基础,最值得注意的是,在$ \ Mathcal {C} $中,通过Moore End索引的频谱类别的频谱类别模型。这适用于定义Waldhausen的$ s _ {\ bullet} $的版本 - 光谱Waldhausen类别的构造,这对于Dennis Trace Map的此帐户至关重要。 我们的目标既是便利性又是透明度 - 我们提供了所有细节,除了证明$ \ mathrm {thh} $的添加性定理,这是理所当然的----博览会并不关心创意的创意,而是旨在为学习Dennis Trace及其基础机器提供有用的资源。

We give an explicit point-set construction of the Dennis trace map from the $K$-theory of endomorphisms $K\mathrm{End}(\mathcal{C})$ to topological Hochschild homology $\mathrm{THH}(\mathcal{C})$ for any spectral Waldhausen category $\mathcal{C}$. We describe the necessary technical foundations, most notably a well-behaved model for the spectral category of diagrams in $\mathcal{C}$ indexed by an ordinary category via the Moore end. This is applied to define a version of Waldhausen's $S_{\bullet}$-construction for spectral Waldhausen categories, which is central to this account of the Dennis trace map. Our goals are both convenience and transparency---we provide all details except for a proof of the additivity theorem for $\mathrm{THH}$, which is taken for granted---and the exposition is concerned not with originality of ideas, but rather aims to provide a useful resource for learning about the Dennis trace and its underlying machinery.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源