论文标题

熵分布检测:未知示例的无缝检测

Entropic Out-of-Distribution Detection: Seamless Detection of Unknown Examples

论文作者

Macêdo, David, Ren, Tsang Ing, Zanchettin, Cleber, Oliveira, Adriano L. I., Ludermir, Teresa

论文摘要

在本文中,我们认为神经网络的不满意(OOD)检测性能主要是由于软性损失各向异性和产生低熵概率分布的倾向,与最大熵的原则分歧。当前的分布(OOD)检测方法通常不会直接固定软马克斯损失缺陷,而是构建技术来规避它。不幸的是,这些方法通常会产生不希望的副作用(例如,分类精度下降,其他超参数,较慢的推论以及收集额外的数据)。在相反的方向上,我们提议用不受上述弱点遭受的新型损失函数代替SoftMax损失。所提出的Isomax损失是各向同性的(仅基于距离),并提供高熵后验概率分布。通过ISOMAX损失替换SoftMax损失不需要模型或训练更改。此外,经过Isomax损失训练的模型产生的速度与使用SoftMax损失训练的模型一样快速,节能。此外,没有观察到分类精度下降。所提出的方法不依赖于离群/背景数据,高参数调整,温度校准,提取功能,公制学习,对抗性训练,集合程序或生成模型。我们的实验表明,Isomax损失是一种无缝的软磁损耗替换,可显着改善神经网络的OOD检测性能。因此,它可以用作基线OOD检测方法,与当前或将来的OOD检测技术结合使用,以实现更高的结果。

In this paper, we argue that the unsatisfactory out-of-distribution (OOD) detection performance of neural networks is mainly due to the SoftMax loss anisotropy and propensity to produce low entropy probability distributions in disagreement with the principle of maximum entropy. Current out-of-distribution (OOD) detection approaches usually do not directly fix the SoftMax loss drawbacks, but rather build techniques to circumvent it. Unfortunately, those methods usually produce undesired side effects (e.g., classification accuracy drop, additional hyperparameters, slower inferences, and collecting extra data). In the opposite direction, we propose replacing SoftMax loss with a novel loss function that does not suffer from the mentioned weaknesses. The proposed IsoMax loss is isotropic (exclusively distance-based) and provides high entropy posterior probability distributions. Replacing the SoftMax loss by IsoMax loss requires no model or training changes. Additionally, the models trained with IsoMax loss produce as fast and energy-efficient inferences as those trained using SoftMax loss. Moreover, no classification accuracy drop is observed. The proposed method does not rely on outlier/background data, hyperparameter tuning, temperature calibration, feature extraction, metric learning, adversarial training, ensemble procedures, or generative models. Our experiments showed that IsoMax loss works as a seamless SoftMax loss drop-in replacement that significantly improves neural networks' OOD detection performance. Hence, it may be used as a baseline OOD detection approach to be combined with current or future OOD detection techniques to achieve even higher results.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源