论文标题
室温下拓扑绝缘子表面的超快dirac fermion放松的Terahertz特征
Terahertz signatures of ultrafast Dirac fermion relaxation at the surface of topological insulators at room temperature
论文作者
论文摘要
受拓扑保护的表面状态呈现丰富的物理和有希望的自旋,光电和光子应用,这些应用需要正确了解其超快载体动力学。在这里,我们研究了二胰和胰chalcogogenide家族的拓扑绝缘体(TI)中的这些动力学,在那里我们通过将光激发与袋式Terahertz(THZ)与TI样品与Fermi级别相结合,将表面的Dirac Fermions的响应与大量载体的响应相结合,将其隔离到散装载体的响应中。与散装载体相比,我们确定了在拓扑保护的狄拉克表面状态(几百秒秒)中的电荷载体的明显更快的放松。与如此快速的冷却动力学一致,我们观察到THZ的谐波产生,而没有任何饱和效应,而与石墨烯不同,它表现出强烈的饱和度。这为提高THZ非线性转化效率以及高带宽光电和Spintronic信息和通信应用的有希望的途径开辟了道路。
Topologically-protected surface states present rich physics and promising spintronic, optoelectronic and photonic applications that require a proper understanding of their ultrafast carrier dynamics. Here, we investigate these dynamics in topological insulators (TIs) of the bismuth and antimony chalcogenide family, where we isolate the response of Dirac fermions at the surface from the response of bulk carriers by combining photoexcitation with below-bandgap terahertz (THz) photons with TI samples with varying Fermi level, including one sample with the Fermi level located within the bandgap. We identify distinctly faster relaxation of charge carriers in the topologically-protected Dirac surface states (few hundred femtoseconds), compared to bulk carriers (few picoseconds). In agreement with such fast cooling dynamics, we observe THz harmonic generation without any saturation effects for increasing incident fields, unlike graphene which exhibits strong saturation. This opens up promising avenues for increased THz nonlinear conversion efficiencies, and high-bandwidth optoelectronic and spintronic information and communication applications.