论文标题

Cantor设置的双曲线限制在球中补充

Hyperbolic limits of Cantor set complements in the sphere

论文作者

Cremaschi, Tommaso, Pallete, Franco Vargas

论文摘要

令$ m $为双曲线3个manifold,没有排名两个尖头,承认嵌入$ \ mathbb s^3 $。然后,如果$ m $承认$π_1$ - 插入的子手法的精疲力尽,存在cantor sets $ c_n \ subset \ subset \ mathbb s^3 $,这样$ n_n = \ mathbb s^3 \ setminus c_n $是多重和$ n_n \ n_n \ rightarrow m $ $ $ $ $。

Let $M$ be a hyperbolic 3-manifold with no rank two cusps admitting an embedding in $\mathbb S^3$. Then, if $M$ admits an exhaustion by $π_1$-injective sub-manifolds there exists cantor sets $C_n\subset \mathbb S^3$ such that $N_n=\mathbb S^3\setminus C_n$ is hyperbolic and $N_n\rightarrow M$ geometrically.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源