论文标题

基于视觉吸引力的图像排名的集合网络

Ensemble Network for Ranking Images Based on Visual Appeal

论文作者

Singh, Sachin, Sanchez, Victor, Guha, Tanaya

论文摘要

我们提出了一个计算框架,用于在短时间内在同一事件中对图像进行排名(尤其是组照片)。预计该排名与人类对图像的整体吸引力的看法相对应。我们通过主观分析来假设并提供证据,表明吸引人类的因素是其情感内容,美学和图像质量。我们提出了一个由三个信息渠道组成的集合的网络,每个网络都预测了与三个视觉吸引力因素之一相对应的分数。为了进行群体情绪估计,我们提出了一个基于卷积的神经网络(CNN)结构,用于预测图像中的群体情绪。这种新的体系结构强迫网络强调图像中的重要区域,并取得与最先进的结果相当的结果。接下来,我们为图像排名任务开发一个网络,该网络结合了群体情感,美学和图像质量得分。由于不可用的数据库,我们创建了一个在各种社交活动中拍摄的手动注释组照片的新数据库。我们在可用时在此数据库和其他基准数据库上介绍了实验结果。总体而言,我们的实验表明,所提出的框架可以可靠地预测图像的整体吸引力,结果与人类排名密切相对应。

We propose a computational framework for ranking images (group photos in particular) taken at the same event within a short time span. The ranking is expected to correspond with human perception of overall appeal of the images. We hypothesize and provide evidence through subjective analysis that the factors that appeal to humans are its emotional content, aesthetics and image quality. We propose a network which is an ensemble of three information channels, each predicting a score corresponding to one of the three visual appeal factors. For group emotion estimation, we propose a convolutional neural network (CNN) based architecture for predicting group emotion from images. This new architecture enforces the network to put emphasis on the important regions in the images, and achieves comparable results to the state-of-the-art. Next, we develop a network for the image ranking task that combines group emotion, aesthetics and image quality scores. Owing to the unavailability of suitable databases, we created a new database of manually annotated group photos taken during various social events. We present experimental results on this database and other benchmark databases whenever available. Overall, our experiments show that the proposed framework can reliably predict the overall appeal of images with results closely corresponding to human ranking.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源