论文标题

多个时间尺度的神经网络:与上下文相关的序列的产生和通过自主分叉推理

Multiple-timescale Neural Networks: Generation of Context-dependent Sequences and Inference through Autonomous Bifurcations

论文作者

Kurikawa, Tomoki, Kaneko, Kunihiko

论文摘要

在神经系统中观察到亚稳态状态之间的顺序转变,并构成各种认知功能。尽管许多不对称HEBBIAN连接性的研究已经研究了这种序列是如何产生的,但聚焦序列是简单的Markov。另一方面,监督的机器学习方法可以生成复杂的非马尔科夫序列,但是这些序列易受扰动的影响。此外,由于灾难的遗忘,新学到的序列与已经学到的序列的串联很难,尽管串联对于推理等认知功能至关重要。如何生成稳定的复杂序列仍然不清楚。我们已经开发了一个具有快速和缓慢动力学的神经网络,该神经网络受实验的启发。缓慢的动态存储输入和输出的历史记录,并根据存储的历史记录影响快速动态。我们展示的学习规则只需要本地信息可以形成网络,从而在快速动力学中生成复杂而健壮的序列。缓慢的动力学是快速速度的分叉参数,在当前模式不稳定之前,它们稳定了序列的下一个模式。该共存周期导致序列中的电流和下一个模式之间的稳定过渡。我们进一步发现,时间尺度平衡对这一时期至关重要。我们的研究提供了一种新的机制,该机制在神经动力学中具有多个时间尺度生成健壮的复杂序列。考虑到多个时间尺度的观察到了广泛观察到的机制,我们对神经系统中时间处理的理解提高了。

Sequential transitions between metastable states are ubiquitously observed in the neural system and underlie various cognitive functions. Although a number of studies with asymmetric Hebbian connectivity have investigated how such sequences are generated, the focused sequences are simple Markov ones. On the other hand, supervised machine learning methods can generate complex non-Markov sequences, but these sequences are vulnerable against perturbations. Further, concatenation of newly learned sequence to the already learned one is difficult due to catastrophe forgetting, although concatenation is essential for cognitive functions such as inference. How stable complex sequences are generated still remains unclear. We have developed a neural network with fast and slow dynamics, which are inspired by the experiments. The slow dynamics store history of inputs and outputs and affect the fast dynamics depending on the stored history. We show the learning rule that requires only local information can form the network generating the complex and robust sequences in the fast dynamics. The slow dynamics work as bifurcation parameters for the fast one, wherein they stabilize the next pattern of the sequence before the current pattern is destabilized. This co-existence period leads to the stable transition between the current and the next pattern in the sequence. We further find that timescale balance is critical to this period. Our study provides a novel mechanism generating the robust complex sequences with multiple timescales in neural dynamics. Considering the multiple timescales are widely observed, the mechanism advances our understanding of temporal processing in the neural system.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源